THE UNIAXIAL MECHANICAL RESPONSE OF MULTI-RIDGE ICE

VOLUME I SUMMARY REPORT

BY

J. F. DORRIS AND J. S. AUSTIN

TECHNICAL PROGRESS REPORT

BRC 45-85 OCTOBER 1985

Project No. 327-27802.34

Mechanical Properties of Sea Ice

SHARED - Under the Research Agreement between SIRM, and Shell Oil Company dated January 1, 1960, as amended.

Reviewed by:

E.G. Ward

E.N. Earle

Participant:

C.A. Gutierrez

Released by:

J.H. Lybarger

Reference:

Based on work through December 1983.

ă.

i BRC 45-85

TABLE OF CONTENTS	Page
	rage
Volume I	
Abstract	ix
Introduction	1
Mechanical Properties and Statistical Summary	4
Comparison with CRREL's Results	6
Temperature and Strain Rate Effects on the Mechanical Properties	22
Linear Regression Models Based on Total Dissipated Energy	28
Linear Regression Models Based on Energy Dissipated at Peak Strength	32
Idealized Stress-Strain Response	51
Energy Components	52
Stress-Energy Pairs	54
A Parameter for Characterizing the Stress-Strain Response of Multi-Year Ridge Ice	63
"Average" Stress-Strain Curves	66
Physical Properties	83
Summary	103
Recommendations for Future Work	105
References	107
Volume II	
Appendix A - Procedure for Smoothing MPSI Stress-Strain Curves	A-1
Volume III	
Appendix B - Cubic Splines for Force-Time Histories	B-1
. Volume IV	
Appendix C - Streec-Strain Curves	C-1

ii BRC 45-85

LIST OF ILLUSTRATIONS

Figure Number		Page
	Volume I	
1	Maximum stress as a function of strain at maximum stress for T = -5°C	33
2	Maximum stress as a function of strain at maximum stress for T = -20°C	34
3	Maximum stress as a function of stress at 4.5% strain for $T = -5$ °C	35
4	Maximum stress as a function of stress at 4.5% strain for $T = -20$ °C	36
5	Maximum stress as a function of the initial tangent modulus for $T = -5$ °C	37
6	Maximum stress as a function of the initial tangent modulus for T = -20°C	38
7	Maximum stress as a function of the total energy for $T = -5$ °C	39
8	Maximum stress as a function of the total energy for $T = -20$ °C	40
9	Stress at 4.5% strain as a function of the total energy for T = -5°C	41
10	Stress at 4.5% strain as a function of the total energy for T = -20°C	42
11	Maximum stress as a function of the energy dissipated at maximum stress for T = -5°C	44
12	Maximum stress as a function of the energy dissipated at maximum stress for $T = -20^{\circ}C$	45
13	Strain at maximum stress as a function of the energy dissipated at maximum stress for $T = -5^{\circ}C$	- 47
14	Strain at maximum stress as a function of the energy dissipated at maximum stress for $T = -20$ °C	48
15	Strain at maximum stress as a function of the energy dissipated at maximum stress for $\dot{\epsilon} = 10^{-5}/\text{sec.}$	49
16	Strain at maximum stress as a function of the energy dissipated at maximum stress for $\dot{\epsilon} = 10^{-3}/\text{sec}$	50

Figure Number		Page
17	Schematic diagram of idealized material models	53
18	Schematic representation of flow energy and crushing energy	55
19	Maximum stress as a function of the crushing energy for T = -5°C	57
20	Maximum stress as a function of the crushing energy for T = -20°C	58
21	Stress at 4.5% strain as a function of the flow energy for T = -5°C	61
22	Stress at 4.5% strain as a function of the flow energy for T = -20°C	62
23	$(\sigma_{M} - \sigma_{R})/\sigma_{R}$ as a function of I_{C}/I_{F} for $T = -5^{\circ}C$	64
24	$(\sigma_{M} - \sigma_{R})/\sigma_{R}$ as a function of I_{C}/I_{F} for $T = -20^{\circ}C$	65
25	Variation of the mechanical response of multi-year ridge ice for $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $T = -5^{\circ}\text{C}$	67
26	Variation of the mechanical response of multi-year ridge ice for $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $T = -20^{\circ}\text{C}$	68
27	Variation of the mechanical response of multi-year ridge ice for $\dot{\epsilon}$ 10 ⁻³ /sec and T = -5°C	69
28	Variation of the mechanical response of multi-year ridge ice for $\dot{\epsilon} = 10^{-3}/\text{sec}$ and $T = -20^{\circ}\text{C}$	70
29	Point by point "average" stress-strain curve of multi- year ridge ice for $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $\dot{\epsilon} = 10^{-3}/\text{sec}$ at $T = -5^{\circ}\text{C}$	71
30	Point by point "average" stress-strain curve of multi- year ridge ice for $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $\dot{\epsilon} = 10^{-3}/\text{sec}$ at $T = -20^{\circ}\text{C}$	72
31	Least squares "average" stress-strain curve of multi-year ridge ice for $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $\dot{\epsilon} = 10^{-3}$ at $T = -5^{\circ}\text{C}$	- 80
32	Least squares "average" stress-strain curve of multi-year ridge ice for $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $\dot{\epsilon} = 10^{-3}/\text{sec}$ at $T = -20^{\circ}\text{C}$	81
33	Maximum stress as a function of porosity for $\dot{\epsilon} = 10^{-5}/\text{sec}$	95

iv BRC 45-85

Number		Page
34	Maximum stress as a function of porosity for $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $T = -20^{\circ}\text{C}$	96
35	Maximum stress as a function of porosity for $\dot{\epsilon} = 10^{-3}/\text{sec}$ and $T = -5^{\circ}\text{C}$	97
36	Maximum stress as a function of porosity for $\dot{\epsilon} = 10^{-3}/\text{sec}$ and $T = -20^{\circ}\text{C}$	98
37	Initial tangent modulus as a function of porosity for $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $T = -5^{\circ}\text{C}$	99
38	Initial tangent modulus as a function of porosity for $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $T = -20^{\circ}\text{C}$	100
39	Initial tangent modulus as a function of porosity for $\dot{\epsilon} = 10^{-3}/\text{sec}$ and $T = -5^{\circ}\text{C}$	101
40	Initial tangent modulus as a function of porosity for $\dot{\epsilon} = 10^{-3}/\text{sec}$ and $T = -20^{\circ}\text{C}$	102
	Volume II	
A-1	Typical spline fit to experimental data	A-3
A-2	Enlarged view near the origin of the strain measured by the extensometer and the two DCDTs for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test	A-5
A-3	Enlarged view near the origin of the strain measured by the extensometer and the two DCDTs for a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test	A-6
A-4	Measured strain and force histories for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test	A-7
A-5	Measured strain and force histories for a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test	A-8
A-6	Measured force histories for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $\dot{\epsilon} = 10^{-3}/\text{sec}$ test on the same coordinate axes	A-9
A-7	Enlarged view near the origin of the force history for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test	_A-11
A-8	Enlarged view near the origin of the strain history for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test	A-12
A-9	Enlarged view near the origin of the force history for a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test	A-13
A-10	Enlarged view near the origin of the strain history for a	

Figure Number		Page
A-11	Primary smoothing and tangent at the inflection point for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test	A-16
A-12	Primary smoothing and tangent at the inflection point for a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test	A-17
A-13	Schematic diagram of the location of the additional spline with respect to the secondary smoothing	A-19
A-14	Smooth curve obtained for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test using one additional knot to supplement the secondary smoothing	A-21
A-15	Enlarged view of Figure A-14 near the origin	A-22
A-16	Schematic diagram of the location of the two additional knots with respect to the secondary smoothing	A-23
A-17	Smooth curve obtained for a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test using two additional knots to supplement the secondary smoothing	A-25
A-18	Enlarged view of Figure A-17 near the origin	A-26
A-19	Measured force history of a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test with a premature failure	A-27
A-20	Measured strain history of a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test with a premature failure	A-28
A-21	Schematic diagram of the procedure to smooth tests with a premature failure	A-30
A-22	Initial smoothing and the construction of the tangent to the inflection point for a test with a premature failure	A-31
A-23	Final smoothing for a test with a premature failure	A-32
A-24	Final stress-strain curve for a 10 ⁻⁵ /sec test	A-37
A-25	Final stress-strain curve for a 10 ⁻³ /sec test	A-38
A-26	Final stress-strain curve for a test with a premature failure	-A-39

vi BRC 45-85

LIST OF TABLES

Table Number		Page
	Volume I	
1	Identifying Labels for Each Test Condition	5
2	Description of Mechanical Properties	5
3	Mechanical Properties for Samples Tested at $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $T = -5^{\circ}\text{C}$	7
4	Mechanical Properties for Samples Tested at $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $T = -20^{\circ}\text{C}$	10
5	Mechanical Properties for Samples Tested at $\dot{\epsilon} = 10^{-3}/\text{sec}$ and $T = -5^{\circ}\text{C}$	12
6	Mechanical Properties for Samples Tested at $\dot{\epsilon} = 10^{-3}/\text{sec}$ and $T = -20^{\circ}\text{C}$	15
7	Statistical Summary of Mechanical Properties for $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $T = -5^{\circ}\text{C}$	17
8	Statistical Summary of Mechanical Properties for $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $T = -20^{\circ}\text{C}$	18
9	Statistical Summary of Mechanical Properties for $\dot{\epsilon} = 10^{-3}/\text{sec}$ and $T = -5^{\circ}\text{C}$	19
10	Statistical Summary of Mechanical Properties for $\dot{\epsilon} = 10^{-3}/\text{sec}$ and $T = -20^{\circ}\text{C}$	20
11	Comparison of Mean Values of Selected Mechanical Properties. Numbers Indicate the Mean Values Reported Here Normalized by the Mean Values Reported in Reference 1	21
12	Pairwise t-Tests for the Two Levels of Constant Strain Rate	24
13	Pairwise t-Tests for the Two Levels of Constant Temperature	26
14	Summary of Mean Values for σ_{M}	_ 29
15	Summary of Mean Values for ϵ_{M}	29
16	Summary of Mean Values for σ_R	30
17	Summary of Mean Values for E _T	30
18	Summary of Mean Values for I _T	31
19	Linear Regression Models Based on Total Dissipated Energy	31

Table Number		Page
20	Linear Regression Models Based on Energy Dissipated at Maximum Stress	46
21	Summary of Mean Values for Ip	46
22	Summary of Mean Values for I F	56
23	Summary of Mean Values for I C	56
24	Linear Regression Models Based on Crushing Energy and Flow Energy	60
25	Summary of Mean Values for I _C /I _F	60
26	Summary of Normalized "Errors" for $\hat{\epsilon} = 10^{-5}/\text{Sec}$ and $T = -5^{\circ}\text{C}$	73
27	Summary of Normalized "Errors" for $\dot{\epsilon} = 10^{-5}/\text{Sec}$ and $T = -20^{\circ}\text{C}$	76
28	Summary of Normalized "Errors" for $\dot{\epsilon} = 10^{-3}/\text{sec}$ and $T = -5^{\circ}\text{C}$	77
29	Summary of Normalized "Errors" for $\dot{\epsilon} = 10^{-3}/\text{sec}$ and $T = -20^{\circ}\text{C}$	79
30	Comparison of Residual Error for the Two Averaging Techniques	82
31	Structural Classification Schemes for Multi-Year Pressure Ridge Ice Samples According to Cox et al. 1	82
32	Strength, Structure, and Porosity of Selected Ridge Ice Samples Tested at $\dot{\epsilon} = 10^{-5}/\text{Sec}$ and $T = -5^{\circ}\text{C}$ from Cox et al.	85
33	Strength, Structure, and Porosity of Selected Ridge Ice Samples Tested at $\dot{\epsilon} = 10^{-3}/\text{Sec}$ and $T = -5^{\circ}\text{C}$ from Cox et al. 1	86
34	Physical Properties for Samples Tested at $\dot{\epsilon} = 10^{-5}/\text{Sec}$ and $T = -5^{\circ}\text{C}$ from Cox et al. ¹	- 87
35	Physical Properties for Samples Tested at $\dot{\epsilon} = 10^{-5}/\text{Sec}$ and $T = -20^{\circ}\text{C}$ from Cox et al. 1	89
36	Physical Properties for Samples Tested at $\dot{\epsilon} = 10^{-3}/\text{Sec}$ and $T = -5^{\circ}\text{C}$ from Cox et al	90
37	Physical Properties for Samples Tested at $\dot{\epsilon} = 10^{-3}/\text{Sec}$	92

viii BRC 45-85

Table Number		Page
38	Statistical Summary of Physical Properties of Ice Samples Tested at $T = -5$ °C	93
39	Statistical Summary of Physical Properties of Ice Samples Tested at T = -20°C	94
	Volume II	
A-1	Spline parameters for R5A-165/191	A-34
A-2	Spline parameters for R4B-299/325	A-35
A-3	Spline parameters for R8B-483/509	A-36

ABSTRACT

The mechanical properties from the uniaxial compression tests conducted in Phase I of the Mechanical Properties of Sea Ice program are summarized. The tests were conducted at temperatures of -5°C amd -20°C and at strain rates of 10⁻⁵ and 10⁻³/sec. The effects of temperature and strain rate on each mechanical property are investigated. Each stress-strain curve is presented and an energy based parameter is derived to characterize the mechanical response of each curve. The effects of temperature and strain-rate on this parameter are also investigated. The physical properties of each test sample are listed, and their effect on the mechanical properties is briefly discussed.

KEY WORDS: ice mechanics, ridge, ice formed feature, mechanical property, statistical analysis, compressive strength, strain, linear, regression analysis, prediction, testing, stress, load (force), energy, temperature

TECHNICAL PROGRESS REPORT BRC 45-85

THE UNIAXIAL MECHANICAL RESPONSE OF MULTI-YEAR RIDGE ICE

BY

J. F. DORRIS AND J. S. AUSTIN

INTRODUCTION

The Mechanical Properties of Sea Ice (MPSI) is a project, consisting of several phases, to determine the mechanical properties of multi-year sea ice. The project was developed and administered by Shell Development Company. Participants sponsoring Phase I of the project (MPSI-1) included Amoco Production Company, Arco Oil and Gas Company, Chevron Oil Field Research Company, Exxon Production Research Company, Gulf Research and Development Company, Minerals Management Service of the Department of Interior, Mitsui Engineering and Shipbuilding Company, Sohio Petroleum Company, and Texaco Incorporated. The field program to collect ice samples and the experimental program for ice testing were conducted by the U.S. Army Cold Regions Research and Engineering Laboratory (CRREL) at Hanover, New Hampshire.

The experimental program in MPSI-1 was designed to accomplish three goals:

- 1. Measure the mechanical (i.e., 1-D compressive) properties of multiyear ridge ice,
- 2. Determine whether there is any significant variation in the mechanical properties within and between ridges, and
- Develop the test techniques to be used in subsequent phases of the program.

The results presented here summarize the approximately 200 uniaxial compression tests conducted in MPSI-1. These tests have already been documented by Cox et al. in a CRREL report and several excerpts have been presented as technical papers by individual CRREL authors. The CRREL report describes the field program and experimental program in detail and presents the mechanical and physical properties of each test sample. The

purpose of this report is to present an analysis of the digitized test data which complements and expands upon CRREL's analyses by utilizing the entire stress-strain history of each test.

The ice samples tested were extracted with a 4 1/4 in. diameter core barrel in the spring of 1981 from ten multi-year pressure ridges located in the Beaufort Sea, northwest of Reindeer Island. The ice samples were transported to the CRREL laboratories and prepared for testing. Sample preparation included cutting each sample to length, machining the samples to test geometry, and fitting the ends with synthane endcaps. The samples were then tested under uniaxial test conditions. Mellor et al. describe the details of sample preparation and testing techniques.

The mechanical properties were measured by Cox et al. 1 at two temperatures (i.e., -5°C, -20°C) and two strain rates (i.e., $10^{-5}/\text{sec}$, 10⁻³/sec). These temperatures and strain rates were chosen to bracket the temperature and strain rate regimes of most interest to the engineer. To characterize the ice, physical properties (e.g., brine volume, porosity, etc.) of each sample were measured. To better define the physical properties of each ice sample. Cox and Weeks developed a method of calculating the air volume of the sample. This method permits the total porosity to be calculated by knowing both the air volume and brine volume. A statistical summary of the mechanical properties shows large scatter which is attributed to the wide variation of ice types found in multi-year ridges. Richter and Cox 3 developed a classification scheme for multi-year ridge ice which offers a means of reducing the scatter by grouping tests according to ice structure. classification scheme was applied to approximately 35 test samples in Phase I, and a forthcoming report by Richter-Menge and Cox will contain additional crystallographic analyses of MPSI-1 test samples.

Weeks and investigates the statistical variation of strength within and between ridges. Based on these statistics, he concludes that there is no significant variation between cores at the same site (i.e., within the same ridge) nor is there any significant differences between ridges. However, Weeks qualifies his conclusions by pointing out that the ridges used in this study represent old, well-healed ridges whose strength characteristics are probably quite different than younger, less consolidated ridges.

Subsequent phases of the program will emphasize other types of tests to give a complete picture of the mechanical response of multi-year ridge

ice. To this end, test techniques were developed for uniaxial tension, constant load compression, and conventional triaxial tests. The conventional triaxial tests are conducted by applying the confining pressure in proportion to the axial stress. These test techniques are discussed by Mellor et al.⁵

The goal here is to describe the mechanical (i.e., uniaxial compression) response as a whole by looking at the stress-strain curves. We begin by listing the mechanical properties and describing the effects of temperature and strain rate on those properties. The mechanical properties are then integrated in such a way as to yield a quantity which characterizes a particular stress-strain curve. The variation in the mechanical response at each test condition will be illustrated, and the ability to characterize each stress-strain curve will permit a discussion of changes in mechanical response with changes in temperature and strain rate.

The stress-strain curves presented here were produced by digitizing the analog records of each test and fitting splines to the digitized data. To make the splines suitable for future constitutive modeling, certain assumptions were made about the initial conditions of the force-time record which yielded different values for the mechanical properties than those reported by Cox et al. These differences are small except in one case which will be noted later. The assumptions made and procedures followed in processing the data are described in Appendix A. The spline for each force-time history is printed in Appendix B and each stress-strain curve is presented according to test condition in Appendix C.

For completeness, the physical properties measured by Cox et al. will be listed here. Although the large variations in mechanical properties and mechanical response of multi-year ridge ice are related to the physical properties of each test sample, discussion will be limited because of the limited amount of crystallographic data presently available. Attempts, however, will be made to establish bounds and identify trends for the dependence between mechanical and physical properties. The pending crystallographic analysis by Richter-Menge and Cox will permit a more detailed look into the effects of physical properties.

MECHANICAL PROPERTIES AND STATISTICAL SUMMARY

The uniaxial compression test samples in MPSI-1 were taken from ten multi-year pressure ridges in the Beaufort Sea. At each ridge, two sites were selected several meters apart. At a particular site, the samples were extracted from two cores several centimeters apart. Each sample was labeled with a Ridge ID, whose nomenclature identified the ridge, core (and site), and depth of the sample. The designations R1 through R10 in the Ridge ID identify the ridge and the letters A-D identify the core. The letters A, B designate the cores at one site while the letters C, D designate the cores at the second site. The depths in centimeters from the top of the ridge to the top and bottom of the ice samples are denoted in the Ridge ID by the two numbers separated by a slash. Thus a sample designated R1A-062/089 would indicate a sample taken from Ridge 1, site 1, core A, and a depth of 62 centimeters to the top and 89 centimeters to the bottom of the sample.

The uniaxial compression tests were conducted at two temperatures (i.e., $T = -5^{\circ}C$, $T = -20^{\circ}C$) and two strain rates (i.e., $\dot{\epsilon} = 10^{-5}/\text{sec}$, $\dot{\epsilon} = 10^{-3}/\text{sec}$). The four possible combinations of temperatures and strain rates give four independent test conditions. For convenience in later discussions, the test conditions are assigned labels which are listed in Table 1. In the following data summaries, all tests are grouped according to test conditions. Each test within a test condition group is identified by the Ridge ID of the test sample.

Following the procedures discussed in Appendix A, stress-strain curves were generated for each test from which the mechanical properties were calculated. The particular mechanical properties considered in the analysis of the stress-strain curves are described in Table 2. This list includes the mechanical properties commonly used by engineers to describe the mechanical response of other materials as well as additional properties not usually calculated. The additional properties include the energy dissipated at peak strength, the total energy dissipated, "flow" energy, and "crushing" energy. The flow and crushing energy terms are obtained from a decomposition of the total energy and will be defined in the next section. For completeness, the failure modes defined by Dorris are included but will not be discussed here.

In Table 2, the most important quantities used to describe the mechanical response of multi-year ridge ice are σ_M , ϵ_M , ϵ_T , σ_R , and ϵ_T . The quantity, ϵ_T , is the integral of the stress-strain curve and measures the

5 BRC 45-85 Table 1

IDENTIFYING LABELS FOR EACH TEST CONDITION

Ė	-5°C	-20°C
10 ⁻⁵ /sec	C55	C 520
10 ⁻³ /sec	C35	C320

Table 2

DESCRIPTION OF MECHANICAL PROPERTIES

Mechanical Property	Description	Units
σ _M	Maximum Stress	psi
m ε _M	Strain at Maximum Stress	d/ /a
σ _R	Residual Stress (Stress at 4.5% Strain)	psi
ε Ε	Strain at End of Test	d/ /6
E _T	Initial Tangent Modulus	psi \times 10^6
E _S	Secant Modulus $E_S = \frac{\sigma_M}{\varepsilon_M}$	psi × 10 ⁶
σ _R /σ _M	Stress Ratio	
FM	Failure Mode	400 400 400
IP	Energy to Maximum Stress $I_{p} = \int_{0}^{\epsilon} M_{\sigma}(\epsilon) d\epsilon$	(in-lbf)/in ³
IT	Energy to 4.5% Strain $I_T = \int_{\Omega} \sigma(\varepsilon) d\varepsilon$	(in-lbf)/in ³
IF	Flow Energy $I_F = 1/2 \left(.09 - \frac{\sigma_R}{E_T}\right) \sigma_R$	(in-lbf)/in ³
I _C	Crushing Energy $(I_C = I_T - I_F)$	(in-lbf)/in ³
I _C /I _F	Energy Ratio	

material's ability to store or dissipate energy. The spatial distribution of I_T in the stress-strain plane characterizes the material's response as either brittle or ductile. For multi-year ridge ice, the quantities σ_M , ε_M , ε_T and σ_R can approximate the spatial distribution of I_T by defining the initial condition, peak value, and final value of the material response. In the following, these five quantities will be referred to collectively as primary properties.

In contrast to $\sigma_{\rm M}$, $\varepsilon_{\rm M}$, and $E_{\rm T}$, the primary properties $\sigma_{\rm R}$ and $I_{\rm T}$ are arbitrary since their value depends on the choice of strain at which they were calculated. Each test was programmed to end at 5% strain, but the procedures followed in processing the data resulted in tests with varying lengths slightly less than 5% strain. In order to make meaningful comparisons between the properties associated with the end of the test, 4.5% strain was arbitrarily chosen to be the strain at which $\sigma_{\rm R}$ and $I_{\rm T}$ are calculated.

The mechanial properties are tabulated for each test according to the four test conditions in Tables 3-6. Any test in these tables having missing values indicates a test which did not reach 4.5% strain due to premature failure of the test sample. All available mechanical properties are used in the following statistical summary of properties, but only those tests which reached 4.5% strain will be used in describing the stress-strain response of multi-year ridge ice.

A statistical summary of the mechanical properties for each test condition is provided in Tables 7-10. The tables list the number of samples for each property along with the standard descriptive statistics of each sample population. A measure of kurtosis and skewness is included to give an impression of the shape of each distribution of the mechanical properties.

COMPARISON WITH CRREL'S RESULTS

The mean values of selected properties from Tables 7-10 are normalized by the corresponding mean values reported by Cox et al. 1 to provide a comparison of data sets. The ratios of mean values are listed in Table 11 and show good agreement between the data sets except for the initial tangent modulus at the low strain rate.

The discrepancy in modulus values can be attributed to different measuring techniques. The instrumentation of an ice sample provided two methods of measuring the axial displacement. One method employed two DCDTs

Table 3

MECHANICAL PROPERTIES STRAIN RATE = (10E-5)/SEC TEMPERATURE = -5°C

Ridge ID	ω _ω	e _M	σ _R	e _E	ET	R S	σ _R /σ _M	FM	ďI	I	IF	J _I	$^{ m I_{ m C}/I_{ m F}}$
R1A-062/089	425.	.344	241.	∞	6			31		•	10.8	=:	7.
/08	321.	.463	205.	4.87	0.467	0.069	0.638	31	1.18	10.4	9.5	1.22	0.133
R2A-140/165	368.	.597	236.	ω,	4.	•	•	30	•	•	10.6	.2	• 2
R2B-094/121	167.	.142	174.	æ	• 2		•	10	•	•	7.0	•	•
R3A-106/131	333.	.461	245.	φ	.3	•	•	30	•	12.4	10.9	٠,4	7
R3B-161/187	300.	.335	201.	∞	.2	•	•	13	•		0.6	• 2	٦.
R4A-312/338	277.	.481	189.	æ	4.	•	•	30	•	•	8.5	.2	•
R4B-328/354	244.	.497	156.		.2		•	31		•	7.0	٦.	٦.
/1	.909	.229	272.	æ	0	•	•	13	•	•	12.2	~:	• 2
R5B-075/101	755.	.219	241.	æ		. •	•	30	•	•	10.8	. 7	٠,
9/0	359.	.545	252.	æ	4.	•	•	30	•	•	11.3	3	~
R7B-126/152	239.	.452	206.	æ	٠,	•	•	10	•	9.3	9.5	0	•
R8A-133/159	238.	.335	202.	4.85	4.	•	•	13	•		9.0	0.16	•
R8B-162/189	324.	.433	224.	φ,		•	•	30	•		10.0	٧.	~;
R3C-095/122	265.	.483	201.	æ	~	•	•	30	•		8.9	•	•
R3D-159/186	201.	.841	198.	Š	• 2	•	•	30	•		& &	0	0
R5C-039/066	376.	.435	253.	æ	•	•	•	30	1.39	13.1	11.3	. 7	0.155
R5D-159/186	359.	.599	230.	æ		•	•	30	•		10.2	0	• 2
R6C-166/193	211.	.337	221.	ω,	۳,	• 06	•	10	•		9.4	•	•
R8C-048/075	228.	.234	169.	αį	'n	• 00	•	31	•		7.6	•5	.
R8D-236/263	329.	.254	267.	ω,	7.	.13	•	30	•		11.9	•	•
RIA-226/252	208.	.204	113.	ω,	.2	0.102	0.546	31	•		5.1	9.	٠
R1A-399/425	203.	.234	127.	ω,	0	• 08	•	13	•	9.9	5.7	ထ	Τ.
R2A-205/230	403.	.461	•	2	5	.08	•	0		•	•	•	•
R2A-314/339	313.	.257	163.	æ	٠,	0.121	.52	12	•	•	•	۲.	7
R2B-408/434	339.	.607	258.	α	7.	0.056	0.762	13	•	12.8	11.5	1.26	0.109
R2B-468/494	259.	.380	194.	ထ္	٠,	0.068	4	31	•	•	•	6.	۲.

Table 3 (Cont'd.)

Ridge ID	МΩ	E _M	o'R	3 H	EŢ	R _S	$\sigma_{\rm R}/\sigma_{\rm M}$	FM	ď	E I	I F	o _I	I _C /I _F
3A-220/24	248.	.342	178.	4.81	0.183	0.073	0.716	31	0.64	8.6	7.9	0.68	•
3A-430/45	301.	.463	208.	ထွ	•	90	•	31	1.20	10.6		1.26	_
-363/38	369.	105.	243.		•	0.074	9 1	30	•	12.7		•	۲.
4A-426/45	318.	.312	176.	ထ္	•	0.102	5	32	•	9.5		•	.2
-391/41	293.	.277	190.	œ	•	0.106	•	31	0.67	9.4		•	~
4B-449/	244.	.355	166.	ထ	•	0.069	•	13	•	8.3		•	
-397/	309.	.480	225.	ထ	•	0.064	.72	10	1.05	11.3		•	7
-445/	451.	.253	209.	ထ	•	0.178	•	30	•	11.9		•	.2
_	319.	.493	220.	. 7	•	0.065	•69	30	1.25	11.0		•	7
-341/	361.	.553	•	7	•	0.065	•	31	•	•	•	•	•
398/	294.	.407	229.	. 7	•	0.072	. 7	13	0.95	11.3		•	0.105
R7A-263/289	71.	.078	59.		•	0.091	0.841	31	0.04	2.6	5.6	00.0	00000
R7A-342/368	553.	.218	160.	ထ	•	0.254	•2	32	0.86	9.4		•	0.310
	226.	.448	161.	φ	•	0.050	. 7	30	0.80	7.8		•	0.087
R8A-164/190	259.	.242	176.	∞	•	0.107	•	10	0.50	8.4		•	990.0
8A-432	631.	.169	199.	œ	0.866	0.372	£.	13	0.77	11.2		•	0.254
ۍ.	335.	.253	206.	ထ	•	0.132	0.615	30	99.0	10.6		•	0.146
_	338.	.416	219.	6.	0.449	0.081	9.	30	1.14	11.5		•	0.173
-296/	290.	.610	•	. 2	•	0.048	•	30	1.51	•	•		•
) 20	186.	.210	127.	φ	0.278	0.089	•	10	0.31	0.9	5.7	•	0
-219/	252.	.341	186.	ထ		0.074	7	30	0.69	8.9	8.3	•	0
3D-287/31	334.	.659	251.	ထ္	•	0.051	. 7	30	1.87	12.7	11.2	•	0.134
5c-219/2	290.	.487	197.	. 7	0.248	0.059	•	30	1.13	10.2	8.8	•	7
5c-282/	257.	.508	189.	∞	•	0.051		31	1.08	9.3	8.4	•	
5D-225/2	368.	.508	235.	ထ	•	0.072	•	30	1.51	12.4	10.5	•	Τ.
5D-294/32	325.	.498	208.	φ	0.461	0.065	0.640	31	1.33	11.2	9.3	1.89	0.203
R6A-562/589	219.	.479	176.		0.327	0.046	ထ	30	0.89	8.4	7.9	•	190.0

Table 3 (Cont'd.)

R6C-529/556 368811 272 R8C-378/405 775239 207. R8C-476/503 137214 82. R8D-446/473 217211 R8D-534/561 241200 123. R9A-341/368 265488 182. R9B-385/412 289701 R9C-426/453 284468 216. R9D-181/208 254299	~	ə ਸ	E.	H S	$\sigma_{\rm R}/\sigma_{\rm M}$	FM	$^{\mathrm{I}}\mathrm{_{b}}$	Ţ	IF	$^{2}\mathrm{I}$	$^{ m I_C/I_F}$
775239 137214 217211 241200 265488 289701 284468 254299	١.	4.88	1.039	0.045	0.740	30	2.55	14.0	12.2	1.80	0.147
137214 217211 241200 265488 289701 284468 254299	_	4.87	0.762	0.324	0.267	13	1.32	13.9	9.3	4.61	0.497
217211 241200 265488 289701 284468 254299		4.65	0.190	0.064	0.595	10	0.22	4.0	3.7	0.33	0.089
241200 265488 289701 284468 254299		4.30	0.376	0.103	•	10	0.36	•	•	•	٠
265488 289701 284468 254299	_	4.88	0.312	0.120	0.511	30	0.37	7.0	5.5	1.49	0.270
284468 254299	_	09.4	0.645	0.054	0.689	30	1.10	9.5	8.2	1.34	0.164
284468 254299	_	1.86	0.380	0.041	•	30	1.75	•	•	•	•
254299		4.50	0.446	0.061	0.761	30	1.12	10.3	6.7	0.63	0.065
587 876 8	_	4.40	2.498	0.085	•	13	0.62	٠	•	•	•
000.	_	4.92	0.539	0.051	0.742	30	2.05	13.5	11.5	1.95	0.169
313415		4.88	0.658	0.075	0.767	10	1.08	11.7	10.8	0.94	0.088
253366		4.88	0.346	0.069	0.710	30	0.75	8.8	8.0	0.79	0.099
.317		4.87	0.341	0.109	0.593	31	0.85	10.9	9.5	1.74	0.190

Table 4

MECHANICAL PROPERTIES
STRAIN RATE = (10E-5)/SEC TEMPERATURE = -20°C

Ridge ID	ω _ω	e _M	σ _R	ਜੁ	EŢ	ES	$\sigma_{\rm R}/\sigma_{\rm M}$	FМ	$_{ m d}_{ m I}$	$_{ m I}_{ m I}$	IF	$\mathfrak{I}_{\mathrm{I}}$	$^{\rm I_C/I_F}$
R1C-065/092	574.	.181	209.	ω.	•	•	.36	0	•	•	•	∞.	.2
R1D-071/098	622.	.205	195.	4.88	1.164	0.304	0.313	10	0.91	12.3	8.8	3.54	0.404
R3C-128/155	429.	\sim	307.	∞.	•	•	.71	31	•	•	•	c.	٦,
9/15	291.	4	243.	∞	•	•	.83	31	•	•	•	0	0
7/12	348.	S	•	•	•	- •	•	0	•	•	•	•	•
1/14	412.	C	275.	∞	•	•	0.668	13	•	•	•	•	0
1/48	330.	.279	.220.	9•	•	•	999.0	31	•	10.9	8.6	1.05	0.107
/19	518.	7	323.	•	•	•	0.624	13	•	•	•	•	7
/21	475.	4	289.	ထ	•	•	0.609	13	•	•	•	•	-:
R9A-125/152	365.		356.	ထ္	•	•	976.0	13	•	•	•	•	0
3/01	338.	m	304.	∞	•	•	0.899	31	•	13.8	•	•	0
\sim	312.	9	213.	6.	•	•	0.681	30	•	•		•	
-157/1	369.	_	275.	•	•	•	0.745	30	•	•	•	•	7
/23	385.	2	209.	æ	•		0.545	13	•	11.1	•	•	7
240/26	451.	\sim	262.	œ	•	•	0.581	0	•	•	•	•	~
209/23	534.		237.	.7	•	•	0.445	12	•	13.6	•	•	.2
/34	229.	\sim	131.	9	•	•	0.569	31	•	7.0	•	•	
5	426.	4	•	7	•	•	•	10	•	•	•	•	
1/43	169.	\sim	•	-	•	•	•	13	0.31	•	•	•	•
0/27	440.	4	315.	∞	•	•	0.716	30	1.16	•	14.0	4.	
8/34	454.	\sim	3	φ.	•			30	1.98	16.8	14.8	1.98	
-250/27	485.	9	٠	æ	•	•	•	32	1.47	•	•	•	•
328/3	390.	0	6	4.88	•	•	•	0	•	•	•		.2
255/28	390.	9	281.	∞	•	0.083	0.721	0	•	14.0	12.5	1.45	0.116
5/35	462.		7	∞	•	.11	•	0	1.50	14.6	12.4		7
99/199	271.	S	•	1.45	•	0.107	•	13	•	•	•	•	•
/61	398.	_	•	• 2	0.817	0.144	•	30	0.89	•	•	•	•

Table 4 (Cont'd.)

R8C-444/471 391276 . 2.48 R8C-508/535 241189 94. 4.97 R8D-477/504 173318 119. 4.88 R8D-565/592 389239 191. 4.88 R9A-523/550 419400 . 3.88 R9B-449/476 297308 209. 4.88		2.48	+	S	oR/oM	Σ	I b	T T	1	$^{\mathrm{I}}^{\mathrm{c}}$	$^{ m I_C/I_F}$
241189 94. 173318 119. 389239 191. 419400 .		}	0.546	0.142		12	0.86	•	•	•	•
173. .318 119. 389. .239 191. 419. .400 . 297. .308 209.		4.97	0.347	0.127	0.389	31	0.34	9.6	4.2	1.38	0.328
389239 191. 419400 . 297308 209.		4.88	0.331	0.055	0.684	12	0.47	6.5	5.3	1.17	0.219
419400	-	4.88	0.610	0.162	0.492	30	0.70	10.3	8.6	1.73	0.203
297308 209.		3.88	0.509	0.105	•	13	1.45	•	•	•	•
	.,	4.88	0.440	960.0	901.0	31	0.77	10.1	9.4	0.74	0.080
.346 272.	.,	4.87	0.735	0.121	0.645	30	1.28	14.2	12.2	2.01	0.165
362381 236.	.,	4.88	0.504	0.095	0.653	30	1.21	12.1	10.6	1.54	0.145
7 457253 220.	.,	4.87	0.533	0.180	0.482	13	0.87	11.6	6.6	1.75	0.177
536573 427.	7	4.85	0.423	0.093	161.0	30	2.59	20.9	19.0	1.90	0.100

Table 5

MECHANICAL PROPERTIES STRAIN RATE = (10E-3)/SEC TEMPERATURE = -5°C

Ridge ID	Œ	E M	$\sigma_{\mathbf{R}}$	3 3	$\mathbf{E}_{\mathbf{T}}$	ES	$\sigma_{\rm R}/\sigma_{\rm M}$	FM	I p	I	I F	o _I	IC/IF
R1A-175/201	1225.	.122	•	1.17	1.507	1.003	•	0	0.97	•		•	•
R1B-131/157	1222.	.211	172.	4.90	0.883	0.579	0.141	31	1.64	17.4	1.7	9.68	1.253
R2A-110/135	403.	.036	•	0.04	1.275	1.123	•	20	0.07	•	•	•	•
R2B-135/161	842.	.093	•	0.09	1.222	0.908	•	23	0.45	•	•	•	•
R3A-188/213	927.	.140	203.	4.98	1.089	0.664	0.219	31	0.86	15.2	9.1	80.9	0.667
R3B-130/155	870.	.123	245.	4.90	1.140	0.709	0.281	30	0.71	15.0	11.0	4.00	0.364
R4A-283/309	893.	860.	•	0.10	1.179	0.911	•	23	0.52	•	•	•	•
R4B-299/325	885.	.126	103.	4.86	1.016	0.700	0.117	30	0.71	10.5	4.6	5.87	1.268
R5A-135/161	1123.	.078	•	0.08	1.877	1.446	•	23	0.50	•	•	•	٠.
R5B-141/167	1288.	.122	•	0.12	1.205	1.052	•	23	0.85	•	•	٠	•
R7A-005/031	757.	.107	•	0.11	0.846	0.705	•	23	0.45	•	٠	•	•
R7B-072/098	510,	.106	•	0.11	1.823	0.481	•	23	0.44	•	•	•	
R8A-033/059	357.	.075	•	0.08	0.474	0.474	•	23	0.13	•	•	•	•
R8B-011/037	761.	690	٠	0.07	1.203	1.102	•	20	0.28	•	•	•	•
R2C-049/076	654.	.145	159.	4.98	0.643	0.452	0.243	31	09.0	10.2	7.1	3.06	0.430
R2D-134/161	733.	.149	155.	4.98	0.708	0.490	0.212	31	0.70	11.5	7.0	4.54	0.653
R4C-244/271	788.	.092	•	0.09	0.870	0.857	•	20	0.37	•	•	•	•
R4C-309/336	847.	.209	208.	4.98	0.670	0.405	0.245	30	1.18	14.8	9.3	5.47	0.587
R4D-228/255	624.	.067	•	0.07	1.007	0.933	•	20	0.22	•	•	•	•
R7C-007/034	910.	.093	•	0.09	1.466	0.980	•	23	0.52	•	٠	•	•
R6A-398/425	789.	.135	107.	4.99	0.929	0.585	0.135	32	0.68	9.7	4.8	4.89	1.017
R6A-504/531	829.	.175	217.	4.99	0.717	0.474	0.262	30	0.00	14.6	9.7	4.87	0.500
R7D-088/114	1014.	.160	221.	5.00	1.772	0.633	0.218	30	1.16	16.8	6.6	6.87	0.692
R9C-080/107	905.	.185	256.	4.99	0.833	0.488	0.283	31	1.09	16.4	11.5	4.92	0.428
R9D-082/109	847.	.160	102.	5.00	0.791	0.529	0.121	10	0.85	10.3	9. 5	5.72	1.247
R1A-300/326	1594.	.136	•	0.14	1.302	1.175	•	20	1.14	•	•	•	•
R1B-216/241	856.	.149	179.	4.95	0.953	0.576	0.210	13	0.84	13.7	8.0	99.5	0.704

Table 5 (Cont'd.)

Ridge ID	Ψ _Ω	E _M	a R	n Fri	EŢ	E.S.	$^{\sigma_{R}/\sigma_{M}}$	FM	Ip	$\mathbf{I}_{\mathbf{T}}$	ΙĘ	$^{\mathrm{J}}_{\mathrm{I}}$	$^{\mathrm{I}_{\mathrm{C}}/^{\mathrm{I}_{\mathrm{F}}}}$
	982.	.122	148.	4.88	1.257	0.804	0.150	32	0.78	12.7	6.7	6.05	0.909
R2A-383/408	1244.	.193	. 201	0.10	1.400	1.085	0.002	32 20	0.58		· ·	7 .	507.
R2B-351/377	1156.	.118	•	0.12	1,283	0.977	•	12	0.81	•	•	•	•
R2B-438/464	.696	.152	144.	4.88	1.024	0.640	0.149	30	96.0	13.7	6.5	7.23	1.118
R3A-401/427	890.	.123	160.	4.93	1.248	0.721	0.179	13	0.75	13.3	7.2	6.11	0.850
R3B-239/265	834.	.133	255.	4.91	1.007	0.628	0.306	30	0.74	16.9	11.4	5.46	0.477
R3B-331/357	940.	.152	209.	4.91	1.073	0.617	0.222	32	0.97	16.9	9.4	7.52	0.801
R4A-398/423	754.	191.	134.	4.89	0.734	0.467	0.178	30	0.80	11.9	0.9	5.88	0.977
R4B-358/384	750.	.142	95.	4.88	0.859	0.530	0.127	32	0.71	10.4	4.3	6.13	1.436
R4B-420/446	949.	.165	•	0.18	1.067	0.575	•	10	1.03	•	•	•	•,
R5A-473/499	846.	.144	178.	4.97	0.953	0.586	0.211	13	0.82	14.3	8.0	6.31	0.789
R5B-287/313	1045.	.093	•	0.10	1.391	1.121	•	20	0.56	•	•	•	•
R5B-370/396		.130	145.	4.99	976.0	0.611	0.183	31	0.68	12.6	6.5	60.9	0.934
R7A-232/258	723.	.145	134.	4.99	0.656	0.499	0.185	30	0.64	10.0	0.9	3.98	0.662
R7A-295/321		.133	•	0.18	0.950	0.484	•	20	0.60	•	•	•	•
R7B-175/201		.033	•	0.03	1.830	1.724	•	10	0.10	•	•	•	•
R7B-440/466		.158	•	0.16	1.169	0.941	•	23	1.35	•	•	•	•
R8A-305/331	590.	.113	243.	4.90	0.916	0.523	0.413	30	0.45	13.8	10.9	2.90	0.266
R8A-384/410	1312.	.157	•	0.16	1.329	0.833	•		1.33	•	•	•	•
R8B-300/326	554.	.260	241.	4.90	0.531	0.213	0.436		1.10	14.5	10.8	3.71	0.344
R8B-483/509	1450.	.360	•	0.37	1.100	0.403	•		3.98	•	•	•	•
R2C-196/223	862.	.145	187.	4.99	0.804	0.594	0.217	31	0.71	13.2	8.4	4.81	0.573
R2C-278/305	691.	.174	199.	4.97	0.618	0.396	0.287	31	0.79	13.1	8.9	4.18	0.468
R2D-220/247	790.	.133	•	0.14	0.868	0.594	•	12	0.65	•	•	•	•
R2D-334/371	752.	.165	126.	4.99	0.657	0.456	0.168	13	0.75	10.3	5.7	4.64	0.820
R4C-414/441	740.	.152	211.	4.88	0.854	0.488	0.285	30	0.74	13.4	9.5	3.93	0.415

Table 5 (Cont'd.)

					-									
Ridge ID	W _D	ω ₃	o _R	e El	ET	R S	$\sigma_{\rm R}/\sigma_{\rm M}$	FM	Ip	IT	IF	J.	I _C /I _F	
R4C-512/539	841.	.139	86.	4.63	1.011	0.605	0.103	10	0.78	10.9	3.9	1	1.819	
R4D-495/522	631.	.141	•	3,35	0.704	0.448	•	20	0.57	•	•		•	
R6C-476/503	864.	.170	160.	4.99	0.752	0.509	0.185	13	0.94	13.3	7.2	6.12	0.852	
R7C-143/170	1029.	.220	282.	4.78	0.749	0.467	0.274	30	1.48	19.8	12.6	7.16	0.567	
R7C-541/568	1001.	.154	176.	4.98	1.035	0.648	0.176	30	1.00	15.0	7.9	7.09	868.0	
R7D-223/250	938.	.235	240.	4.89	0.632	0.400	0.256	30	1.44	17.8	10.8	7.05	0.655	
R7D-312/339	994.	.165	236.	2.00	0.867	0.602	0.238	30	1.01	17.0	10.6	6.41	909.0	
R9A-445/482	643.	.149	89.	4.97	0.685	0.431	0.139	13	0.64	8.8	4.0	4.80	1.200	
R9B-329/356	788.	.089	•	0.09	1.193	0.881	•	20	0.40	•	٠.	•	•	
R9C-332/359	695.	.195	155.	4.99	0.584	0.356	0.223	30	06.0	11.8	7.0	4.85	769.0	
R9D-249/276		.170	101.	4.98	0.687	0.454	0.131	13	0.84	8.6	4.5	5.26	1.160	
R10A-269/296		.180	287.	5.00	0.947	0.548	0.290	13	1.16	19.2	12.9	6.33	0.492	
R10B-274/301	974.	.174	265.	4.84	0.932	0.558	0.272	0	1.10	18.4	11.9	6.51	0.548	
R10C-445/472	836.	.117		0.12	1.098	0.718	•	21	0.62	•	•	•		
R10D-231/258		.175	136.	4.99	0.874	0.516	0.150	31	1.02	13.4	6.1	7.29	1.193	

Table 6

MECHANICAL PROPERTIES STRAIN RATE = (10E-3)/SEC TEMPERATURE = -20°C

Ridge ID	W _D	W ₃	$\sigma_{\mathbf{R}}$	E E	EŢ	ES	$\sigma_{\rm R}/\sigma_{\rm M}$	FM	ďI	I	IF	$_{\rm C}$	$I_{\rm C}/I_{\rm F}$
R1C-127/154	1513.	.162	•	0.16	1.227	0.935	•	0	1.39	•	•	•	•
R1D-153/178	1240.	860.	•	0.10	1,395	1.267	•	23	0.64	•	•	•	•
R2C-129/156	1576.	.227	•	0.23	0.793	0.695	•	23	1.96	•	•	•	•
R2D-095/122	1266.	.134	•	0.13	1.208	0.945	•	21	0.98	•	•	•	•
R4D-198/225		.119	٠	0.12	1.040	0.988	•	20	0.72	•	•	•	.•
	1217.	.158	212.	4.79	1.489	0.770	0.174	30	1.33	18.1	9.5	8.58	006.0
R6C-134/161	1322.	.158	•	0.16	1.129	0.836	•	12	1.24	•	•	•	•
R7C-092/119	1801.	.237	•	1.64	1.207	0.761	•	23	2.77	•	•	•	•
R7D-036/063	1734.	.232	•	0.23	1.075	0.747	•	23	2.44	•	•	•	•
R9A-071/098	1238.	.225	. •	2.61	0.809	0.550	•	12	1.75	•	•	•	•
R9B-076/103	1134.	.240	97.	4.99	0.751	0.473	0.085	13	1.70	16.5	4.4	12.14	2.786
R9C-049/076	1509.	.269	295.	4.98	0.925	0.560	0.195	31	2.64	23.6	13.2	10.37	0.784
R9D-150/177	1592.	.224	259.	4.98	1.310	0.710	0.163	31	2.41	22.5	11.6	10.87	0.935
R10A-238/265	1825.	.330	•	0.43	0.884	0.553	•	23	3.94	•	•	•	•
R10B-084/111	1493.	.209	233.	4.98	1.392	0.713	0.156	31	2.12	24.4	10.5	13.93	1,331
R1C-349/375	1450.	.168	٠	0.17	1.567	0.865	•	20	1.61	•	•	•	
R1C-384/410	1013.	.095	•	0.10	1.377	1.061	•	20	0.55	•	•	•	•
R1D-179/206	1638.	.162	•	0.16	1.179	1.009	•	20	1.45	•	•	•	
R1D-285/312	1625.	.110	•	0.11	1.706	1.474	•	20	96.0	•	•	•	•
R2C-226/253	1510.	.249	220.	4.98	0.844	909.0	0.146	13	2.33	20.1	6.6	10.23	1.036
R2C-310/337	1082.	.272	•	1.64	0.692	0.398	. •	32	1.98	•	•	•	•
R2D-265/292	1407.	.193	•	0.19	0.919	0.728	•	10	1.55	•	•	•	•
R2D-406/433	1122.	.234	126.	4.98	0.719	0.479	0.112	31	1.68	15.3	5.7	9.64	1.704
R4C-482/509	1449.	.220	321.	4.88	1.068	0.659	0.222	30	2.09	24.3	14.4	9.90	0.688
R4C-543/570	1433.	.278	•	4.41	0.795	0.516	•	31	2.54	•	•	•	•
R4D-382/409	1457.	.274	292.	4.98	0.803	0.531	0.201	31	2.52	24.6	13.1	11.51	0.880
R4D-414/441	1345.	.136	•	0.14	1.461	0.990	•	12	1.12	•	•	•	•

Table 6 (Cont'd.)

Ridge ID	Ψ _Ω	æ	o _R	. E	EŢ	E S	σ _R /σ _M	FM	ď	T	I F	o _I	I _C /I _F
R4D-525/552	1327.	.229	•	0.23	0.887	0.579	•	101	1.89		•		
R6C-559/586	1449.	.255	239.	4.80	1.043	0.569	0.165	30	2.47	22.5	10.7	11.77	1.097
R7C-457/484	1669.	.305	187.	4.99	0.848	0.548	0.112	31	3.31	25.3	8.4	16.91	2.014
R7C-572/599	1784.	.264	•	0.28	1.058	9.676	•	20	3.01	•	•	•	•
R7D-254/281	1323.	.294	375.	4.98	0.702	0.450	0.284	31	2.52	26.0	16.8	9.23	0.550
R7D-546/573	1503.	.240	266.	4.98	0.959	0.627	0.177	32	2.27	23.7	11.9	11.77	0.986
R9A-424/451	1161.	.162	•	0.16	0.949	0.716	•	12	1.10	•	•	•	•
R9B-417/444	1411.	.250	•	0.25	0.861	0.565	•	12	2.15	•	•	•	•
R9C-507/534	1374.	.199	334.	4.98	1.129	0.689	0.243	30	1.78	22.1	15.0	7.12	0.475
R9D-348/375	1187.	.035	•	0.04	4.607	3.364	•	20	0.24	•	•	•	•
R10A-407/434	1462.	.269	391.	4.88	0.797	0.545	0.268	30	2.47	28.8	17.5	11,30	0.646
R10B-449/476	1466.	.230	282.	4.99	0.919	0.639	0.192	30	2.11	22.2	12.6	9.55	0,755
R10C-506/533	1235.	.225	241.	4.99	0.758	0.549	0.195	31	1.70	20.9	10.8	10.09	0.934
R10D-508/535	1315.	.199	228.	4.98	1.249	099.0	0.173	30	1.78	21.4	10.2	11.16	1.090

Table 7

STATISTICAL SUMMARY OF MECHANICAL PROPERTIES

STRAIN RATE = (10E-5)/SEC TEMPERATURE = -5°C

Variable	Z	Mean	Standard Deviation	Minimum Value	Maximum Value	Sum	Kurtosis	Skewness	Variance	c.v.
	67	316,134	122.220	71.000	775.000	21181.000	4.940	1.853	14937.694	38.661
Σ.	67	0.400	0.161	0.078	0.841	26.833	0.032	0.457	0.026	40.109
Σ	5 5	199.918	44.081	59.000	272,000	12195.000	1.196	-0.864	1943.110	22.049
т Ж	7.9	0.509	0.356	0.135	2.498	34.101	14.054	3.039	0.127	69.890
F E	67	0.094	690.0	0.024	0.372	6.326	7.527	2.744	0.005	72.737
S.	7	0.674	0.151	0.267	1.045	41.107	1.746	-0.452	0.023	22.449
M W	7	1.014	0.488	0.040	2,550	67.960	0.416	0.492	0.238	48.115
4. 1	9	10.187	2.500	2,600	15,300	621,400	0.635	-0.518	6.250	24.542
L.	7 (9	8.920	1.973	2,600	12,200	544.100	1.158	-0.840	3.893	22.120
Œ4 4	1 (9	1.266	0.887	000.0	4.610	77.250	2.898	1.224	0.787	70.053
	61	0.138	0.089	00000	0.497	8.418	3.569	1.228	0.008	64.622

18 BRC 45-85

STATISTICAL SUMMARY OF MECHANICAL PROPERTIES

Table 8

STRAIN RATE = (10E-5)/SEC TEMPERATURE = -20°C

nce C.V.		0.010 30.934		0,332 83,532		0.024 24.257	45.546	25.235		808	2000
ess Variance	86 10550.170		517								
s Skewness		0.740									
Kurtosis		-0.263									
Sum	14553,000	11.932									
Maximum Value	622.000		•								
Minimum Value	169.000	0.181	94.	0	0	0	0	δ.	4.	0	
Standard Deviation	102.714	0.100	71.723			0.154					
Mean	393,324	0.322	248.828	0.690	0.133	0.633	1.038	12.700	11.121	1.578	
z	37	37	29	37	37	29	37	29	29	29	
Variable	0	Σ	Σ, G	¥.E	- 대 - 대	σ, / σ,	I M	T E	T C	(T	

19 BRC 45-85

STATISTICAL SUMMARY OF MECHANICAL PROPERTIES

Table 9

STRAIN RATE = (10E-3)/SEC TEMPERATURE = -5°C

Variable N	Mean	Standard Deviation	Minimum Value	Maximum Value	Sum	Kurtosis	Skewness	Variance	C.V.
69	879.855	234.395	357.000	1594.000	60710.000	1.230	0.724	54941.008	26.640
69	0.143	0.050		0.360	9.886	4.566	1.099	0.002	34.894
42	177.405	57,305	86.000	287,000	7451.000	-1.028	0.145	3283.808	32.302
69	1.010	0.312		1.877	69.712	0.786	0.888	0.098	30.919
69	0.677	0.271	0.213	1.724	46.729	2.640	1.439	0.073	39.961
42	0.212	0.076	0.082	0.436	8.902	1.196	0.846	900.0	35.856
69	0.836	0.507		3.980	57.660	21.329	3.575	0.257	60.618
42	13.738	2.821		19.800	577.000	-0.684	0.242	7.956	20.531
42	7.964	2.564		12.900	334.500	-1.026	0.145	6.574	32.192
42	5.776	1.501	2.900	10.120	242.580	1.267	0.622	2.254	25.991
42	0.822	0.400		2,206	34.542	2.617	1.390	0.160	48.639

20 BRC 45-85

Table 10
STATISTICAL SUMMARY OF MECHANICAL PROPERTIES

STRAIN RATE = (10E-3)/SEC TEMPERATURE = -20°C

C.V.	14.315	30,633	29.767	54.079	60.244	28.668	40.895	14.968	29,609	19.564	52.460	
Variance	40766.906	0.004	5781.908	0.377	0.221	0.003	0.593	11,192	11.505	4.542	0.326	
Skewness	0.188	-0.619	-0.231	4.727	4.415	0.200	0.139	-0.474	-0.221	1.179	1.886	
Kurtosis	-0.470	0.127	0.255	26.606	23.488	0.060	0.292	0.433	0.244	3.077	3.882	
Sum	57831.000	8.569	4598.000	.46.530	31.995	3,263	77.210	402,300	206.200	196.070	19.591	
Maximum Value	1825.000	0.330	391,000	4.607	3.364	0.284	3.940	28.800	17.500	16.910	2.786	
Minimum Value	1013,000	0.035	97.000	0.692	0.398	0.085	0.240	15.300	4.400	7.120	0.475	
Standard Deviation	201.908	0.064	76.039	0.614	0.470	0.052	0.770	3.345	3.392	2.131	0.571	
Mean	1410.512	0.209	255.444	1.135	0.780	0.181	1.883	22,350	11.456	10.893	1.088	
2	41	41	18	41	41	18	4.1	18	18	18.	18	
Variable	ď	: ૐ	 	ET.	EI S	σ _R /σ _M	IP	Ţ	Ī	$\Gamma_{\rm C}$	$ I_{\rm C}/I_{\rm F}$	

21 BRC 45-85

Table 11

COMPARISON OF MEAN VALUES

	Test Conditions				
	C55	C520	C35	C320	
σ _M	.929	.973	1.001	1.011	
ε _M	1.053	1.039	1.100	1.100	
σ _R /σ _M	.980	.986	.933	1.071	
E _T	.687	.775	.985	•948	

NOTE: Numbers indicate mean values reported here normalized by mean values reported in (1).

with a gage length of 5 1/2 inches mounted 180° apart on the ice; the other method employed an extensometer with a full sample gage length of 10 inches. Cox et al. measured the initial tangent modulus by graphically measuring the slope of the force-displacement curve where the displacement was taken as the average output of the two DCDTs. This technique has an advantage since it provides a measurement from transducers mounted directly on the ice. However, due to the nonhomogeneous deformation of the ice samples, the DCDTs were only reliable to approximately 0.1% strain. We were interested in studying the stress-strain curve well beyond 0.1% strain. Since the extensometer was used as the control for the test and its output was proportional to time, we chose to calculate the initial tangent modulus by measuring the maximum slope of the force-time curve. These measurements would then be consistent with the stress-strain curve up to 5% strain. Despite the disagreement between the mean modulus values, the discrepancy is within the scatter of the data so that one data set should not be preferred over the other.

TEMPERATURE AND STRAIN RATE EFFECTS ON THE MECHANICAL PROPERTIES

The standard procedure for studying the effects of temperature and strain rate on the mechanical properties would be to conduct an analysis of the variance of each property over the four test conditions. Since the sample populations are unequal for each test condition, this type of analysis would be a lengthy and time consuming procedure that is beyond the scope of this study. Instead, meaningful conclusions about the effects of temperature and strain rate can be drawn by comparison of mean values of a particular property for different pairs of test conditions. Four pairs of test conditions are chosen for comparison. Two pairs represent the two levels of constant temperature and two pairs represent the two levels of constant strain rate.

In most cases, it is obvious from the data and our experience how a mechanical property will vary with temperature or strain rate. However, in cases where experience offers no guidance or when the mean values of the two samples are fairly close and the variances are large, it is difficult to draw a conclusion. In these cases, it is necessary to have an objective method of comparing the mean values. A statistic commonly used to compare mean values is the t-statistic defined by,

$$t = \frac{\bar{x}_a - \bar{x}_b}{s_d} .$$

Here \bar{X}_a and \bar{X}_b are the mean values of the two samples being compared and s_d^2 is the estimated variance of $\bar{X}_a - \bar{X}_b$. The quantity s_d^2 depends on the variance and size of each sample.

The t-statistic is used in the t-test to make inferences about the relative values of the population means, μ_a and μ_b . The first step in conducting a t-test consists of stating an alternative to the null hypothesis, $\mu_a = \mu_b$. The alternative hypothesis is either $\mu_a < \mu_b$, $\mu_a > \mu_b$, or $\mu_a \neq \mu_b$. Once the alternative hypothesis is stated, a confidence limit is chosen which defines the critical region. If the t-statistic falls into the critical region, then the null hypothesis is rejected and the alternative hypothesis is accepted.

A t-test was conducted for each mechanical property for four pairs of test conditions. Table 12 summarizes the t-tests for the two pairs of test conditions with constant strain rate and Table 13 summarizes the t-tests for the two pairs of constant temperature. For each t-test, the alternative hypothesis was chosen by looking at the means and standard deviations of the two quantities being compared. If the means are within the standard deviation of each other, then $\mu_a \neq \mu_b$ is chosen as the alternative hypothesis. If the mean of one quantity is not within the standard deviation of the mean of the other quantity or vice-versa, then the appropriate inequality is chosen for the alternative. It is obvious from the choice of the alternative hypothesis whether a one or two tailed t-test is conducted. In every test, the null hypothesis was tested at the 99% confidence level.

It should be emphasized that the t-tests are only used as an aid in drawing conclusions about the effects of temperature and strain rate and should not be held sacred. It is quite possible that some results from the t-tests are contradictory and perhaps even offend our physical intuition. In these cases, judgment should be exercised before accepting or rejecting the t-test. The degree of confidence we have in the t-test depends on how well the fundamental assumptions of the t-test are satisfied. The most restrictive of these is the assumption that the variances of the two samples being compared are equal. This assumption can be relaxed by using an approximate t-statistic which assumes unequal variances. The statistical package used to calculate the t-statistic in Tables 12 and 13 also calculates the approximate

Table 12

PAIRWISE t-TESTS

STRAIN RATE CONSTANT; TEMPERATURE VARIES

Mechanical Property	Alternative Hypothesis	Critical Region	t	Conclusion (99% Confidence)
^σ M	^μ C520 > ^μ C55	t > 2.37	3.26	^μ C520 > ^μ C55
	^μ C320 > ^μ C35	t > 2.36	12.07	^μ C320 ^{> μ} C35
εM	^μ C520 < ^μ C55	t < -2.37	-2.68	^μ C520 ^{< μ} C55
	^μ C320 ^{> μ} C35	t > 2.36	5.99	^μ C320 > ^μ C35
σR	^μ C520 ^{> μ} C55	t > 2.38	3.98	^μ C520 ^{> μ} C55
	^μ C320 > ^μ C35	t > 2.39	4.37	^μ C320 > ^μ C35
E _T	^μ C520 ^{≠ μ} C55	t > 2.64	1.98	^μ C520 ^{= μ} C55
	^μ C320 ^{≠ μ} C35	t > 2.63	1.41	$^{\mu}$ C320 = $^{\mu}$ C35
E _S	^μ C520 ^{≠ μ} C55	t > 2.64	2.86	^μ C520 ^{≠ μ} C55
	^μ C320 ^{≠ μ} C35	t > 2.63	1.46	$^{\mu}$ C320 = $^{\mu}$ C35
σ _R /σ _M	^μ C520 ^{≠ μ} C55	t > 2.64	-1.20	^μ C520 = ^μ C55
	^μ C320 ^{≠ μ} C35	t > 2.61	-1.56	$^{\mu}$ C320 = $^{\mu}$ C35
Ip	^μ C520 ^{≠ μ} C55	t > 2.64	.243	^μ C520 ^{= μ} C55
	^μ C320 > ^μ C35	t > 2.36	8.60	^μ C320 > ^μ C35
I _T	^μ C520 ^{> μ} C55	t > 2.38	4.06	^μ C520 ^{> μ} C55
	^μ C320 > ^μ C35	t > 2.39	10.24	^μ C320 ^{> μ} C35
I _F	^μ C520 ^{> μ} C55	t > 2.38	4.04	.μ _{C520} > μ _{C55}
	^μ C320 ^{> μ} C35	t > 2.39	4.38	μ _{C320} > μ _{C35}

25 BRC 45-85

Table 12 Cont.

Mechanical Property	Alternative Hypothesis	Critical Region	t	Conclusion (99% Confidence)
I_	^μ C520 ^{≠ μ} C55	t > 2.64	1.61	^μ c520 ^{= μ} c55
Ic	^μ C320 > ^μ C35	t > 2.39	10.62	^μ C320 > ^μ C35
T_/T_	^μ C520 ^{≠ μ} C55	t > 2.64	0.94	^μ c520 ^{= μ} c55
I _C /I _F	^μ C320 ^{≠ μ} C35	t > 2.61	2.07	$\mu_{\text{C320}} = \mu_{\text{C35}}$

Table 13

PAIRWISE t-TESTS
TEMPERATURE CONSTANT; STRAIN RATE VARIES

Mechanical Property	Alternative Hypothesis	Critical Region	t	Conclusion (99% Confidence)
σ	^μ C35 ^{> μ} C55	t > 2.36	17.51	^μ c35 ^{> μ} c55
^σ M	^μ C320 > ^μ C520	t > 2.38	27.58	^μ C320 > ^μ C520
٤	^μ C35 ^{< μ} C55	t < -2.36	-12.68	^μ C35 ^{< μ} C55
^ε M	^μ C320 < ^μ C520	t < -2.38	-6.04	^u c320 ^{< u} c520
σ_	^μ C35 < ^μ C55	t < -2.37	-2.25	^μ C35 = ^μ C55
^σ R	^μ C320 ^{≠ μ} C520	t > 2.69	.301	^μ c320 = ^μ c520
E _T	^μ C35 ^{> μ} C55	t > 2.36	8.74	^μ C35 > ^μ C55
-T	^μ C320 > ^μ C520	t > 2.38	3.29	^μ c320 ^{> μ} c520
Es	^μ c35 ^{> μ} c55	t > 2.36	17.10	^μ C35 ^μ C55
-S	^μ C320 > ^μ C520	t > 2.38	8.31	^μ c320 ^{> μ} c520
σ _R /σ _M	^μ C35 ^{< μ} C55	t < -2.37	-18.25	^μ C35 ^{< μ} C55
°R′ °M	^μ C320 < ^μ C520	t < -2.41	-12.02	^μ C320 < ^μ C520
Ip	^μ c35 ^{≠ μ} c55	t > 2.63	-2.09	^μ C35 ^{= μ} C55
- Y	^μ C320 > ^μ C520	t > 2.38	5.76	^μ C320 > ^μ C520
I _T	^μ c35 ^{> μ} c55	t > 2.37	6.72	^µ С35 > ^µ С55
-1	^μ C320 > ^μ C520	t > 2.41	9.87	^μ C320 ^{> μ} C520
				•

27 BRC 45-85

Table 13 Cont.

Mechanical Property	Alternative Hypothesis	Critical Region	t	Conclusion (99% Confidence)
	^μ C35 ^{≠ μ} C55	t > 2.64	-2.13	$^{\mu}$ C35 = $^{\mu}$ C55
I _F	^μ C320 ^{≠ μ} C520	t > 2.69	0.34	$^{\mu}$ C320 = $^{\mu}$ C520
	^µ С35 ^{> µ} С55	t > 2.37	19.12	^μ c35 ^{> μ} c55
ıc	^μ C320 > ^μ C520	t > 2.41	21.34	^μ C320 ^{> μ} C520
T /T	^и с35 ^{> и} с55	t > 2.37	12.93	^μ C35 ^{> μ} C55
I _C /I _F	^μ C320 > ^μ C520	t > 2.41	8.66	^μ C320 ^{> μ} C520

t-statistic. Use of the approximate t-statistic to test the null hypothesis does not change any of the conclusions in Tables 12 and 13.

Based primarily on our judgment and guided by the t-tests, the effects of temperature and strain-rate on the primary mechanical properties are summarized in Tables 14-18. The four test conditions are shown in matrix form with the two levels of constant strain rate horizontal and the two levels of constant temperature vertical. At each matrix location, the mean, standard deviation, and sample size are recorded. Test conditions connected by a dashed line indicate no change in the mechanical property between those two conditions. Test conditions connected by a solid arrow indicate an increase in the mechanical property in the direction of the arrow.

As expected, the maximum stress increases with decreasing temperature and increasing strain rate. The total dissipated energy follows the same trends for temperature and strain rate. The initial tangent modulus increases with increasing strain rate but is independent of temperature. The most interesting result is that the residual stress shows no change with strain rate, which suggests that the stress-strain curve is rate independent at large strains. However, the residual stress does increase with decreasing temperature.

The results for strain at maximum stress show that at both temperatures, $\epsilon_{\rm M}$ increases with decreasing strain rate. However, Table 15 does not indicate how $\epsilon_{\rm M}$ varies with temperature since the t-tests show that $\epsilon_{\rm M}$ increases with increasing temperature at $10^{-5}/{\rm sec}$ and increases with decreasing temperature at $10^{-3}/{\rm sec}$. This case indicates a possible coupling between the effects of temperature and strain rate which would render the pairwise t-tests inappropriate. In this case, an analysis of variance would be more suitable.

LINEAR REGRESSION MODELS BASED ON TOTAL DISSIPATED ENERGY

Correlations between any two mechanical properties can be investigated by creating ordered pairs of the two properties for each test and plotting the resulting points in the plane. Rather than producing plots for each test condition, plots are produced for each of the two levels of constant temperature to illustrate the effect of strain rate.

The most important mechanical property in terms of ice load calculations is the maximum stress. We seek correlations for this quantity by

 $\frac{\texttt{Table 14}}{\texttt{SUMMARY OF MEAN VALUES FOR }\sigma_{\mbox{\scriptsize{M}}}^{} \mbox{(PSI)}$

É	-5°C		-20°C	
10 ⁻⁵ /sec	316±122		393±103	
10 /360	67			37
10 ⁻³ /sec	69 (,		41
10 ⁹ /sec	879±234		1410±202	

 $\frac{\text{Table 15}}{\text{SUMMARY OF MEAN VALUE FOR } \epsilon_{\text{M}} \text{ (%)}}$

Ť	-5°C		-20°C	
10 ⁻⁵ /sec	.400±.161 67		.322±	37
10 ⁻³ /sec	69 .143:	±.050	.209±	41 064

 $\frac{\text{Table 16}}{\text{SUMMARY OF MEAN VALUE FOR }\sigma_{R}} \text{ (PSI)}$

Ė	-5°C		-20	oc
10 ⁻⁵ /sec	200±44		249±72	
10 /sec	61			29
10 ⁻³ /sec	42	 		18
10 7/sec	177±57		255	±76

 $\frac{\text{Table 17}}{\text{SUMMARY OF MEAN VALUE FOR E}_{T} \text{ (PSI }\times\text{ 10}^{6}\text{)}$

Ť ė	-5°C		-20°C	
10 ⁻⁵ /sec	.509±.356		.690±.576	
10 /300	67			37
10 ⁻³ /sec	69			41
10 %ec	1.010±.312		1.135±.614	

 $\frac{{\tt Table~18}}{{\tt SUMMARY~OF~MEAN~VALUE~FOR~I_{\tt T}~(in-lbf)/in^3}}$

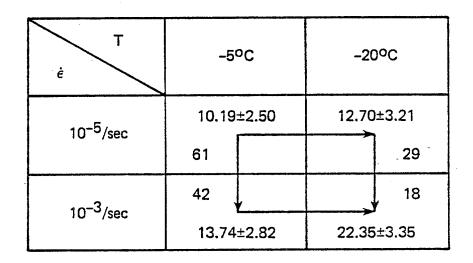


Table 19
LINEAR REGRESSION MODELS BASED ON TOTAL DISSIPATED ENERGY

Independent Variable	Dependent Variable	Test Condition	Linear Coefficient	Intercept	R ²
I _T	σ _M	C55	37.31	-62.58	.54
$^{\mathtt{I}}_{\mathtt{T}}$	σ _M	C520	22.11	120.71	.47
IT	σ _M	C35	30.70	433.61	.36
$^{ extsf{I}}_{ extbf{T}}$	o™ GM	C320	31.54	699.45	.48
I _T	$\sigma_{ m R}$	C55	16.57	31.08	.88
Ι _Τ	$\sigma_{\mathbf{R}}$	C520	21.61	-25.63	.93
I _T	$\sigma_{ m R}$	C35	17.24	-59.46	.72
IT	$\sigma_{\mathbf{R}}$	C320	18.20	-151.22	.64

plotting the maximum stress as a function of the other primary mechanical properties (i.e., $\epsilon_{\rm M}$, $\sigma_{\rm R}$, $E_{\rm T}$, and $I_{\rm T}$) in Figures 1-8. Figures 1 and 2 are of interest since they contain the loci of points for the peak value of the stress-strain curve and illustrate the large variation in the mechanical response within a particular test condition and between test conditions. Linear regression lines were calculated for each property pair at each test condition in Figures 1-8. The property pair which showed the strongest correlation (i.e., the highest R^2 value) is $\sigma_{\rm M}$ vs $I_{\rm T}$. The regression lines are drawn for this pair in Figures 7 and 8 and the regression parameters are listed in Table 19. Regression models for the other property pairs had significantly lower R^2 values and for this reason they are not drawn or tabulated here.

Plots and linear regression models were also produced for all pairwise combinations of the remaining primary mechanical properties. The only property pair which showed a correlation is σ_R vs I_T . Plots for this pair together with the regression line for each test condition are shown in Figures 9 and 10. The regression parameters for this pair at each test condition are listed in Table 19.

The positive correlations for σ_M and σ_R with I_T are not surprising when one considers the general shape of the stress-strain curve for multi-year ridge ice. The interesting observation is the similarity in slopes (except possibly for σ_M vs I_T at C520) at each test condition for the two models. This suggests that the variations of σ_M with I_T and σ_R with I_T are independent of temperature and strain rate. The temperature and strain rate effects on the σ_M vs I_T and σ_R vs I_T models are accounted for by translations of the regression lines in the plane.

LINEAR REGRESSION MODELS BASED ON ENERGY DISSIPATED AT PEAK STRENGTH

Our ability to calculate ice loads would be greatly improved if a failure criteria could be formulated to predict the maximum stress. Failure or yield criteria are often formulated by appealing to energy considerations. We have already seen some correlation between the maximum stress (σ_{M}) and the total dissipated energy (I_{T}) in Figures 7 and 8. However, I_{T} depends on the post peak behavior of the stress-strain curve and, consequently, would not be useful in the prediction of σ_{M} . Instead, an energy-based failure criterion

MPSI PHASE1: UNIAXIAL COMPRESSION TEMPERATURE = -5 DEG C

M STRAIN RAIE 4 (10E-3)/SEC O STRAIN RAIE 4 (10E-3)/SEC

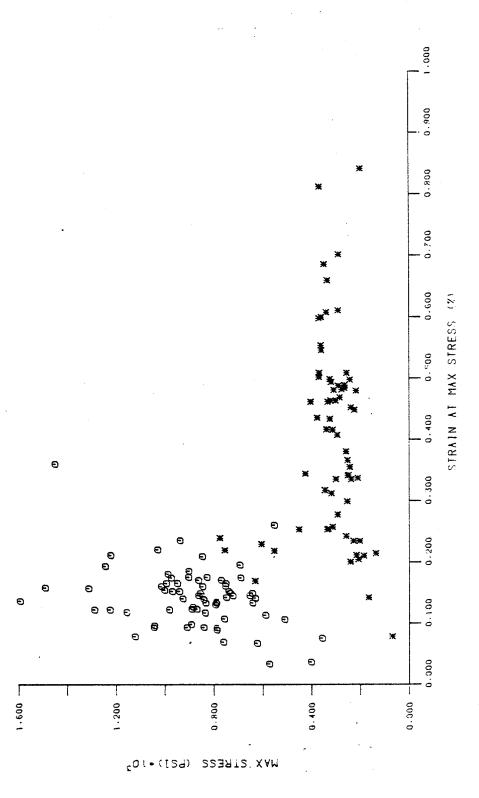


Fig. 1 - Maximum stress as a function of strain at maximum stress for $T\,=\,-5\,^{\circ}\text{C}_{\bullet}$

M STRAIN RATE # (10E-3)/SEC Ø STRAIN RATE # (10E-3)/SEC

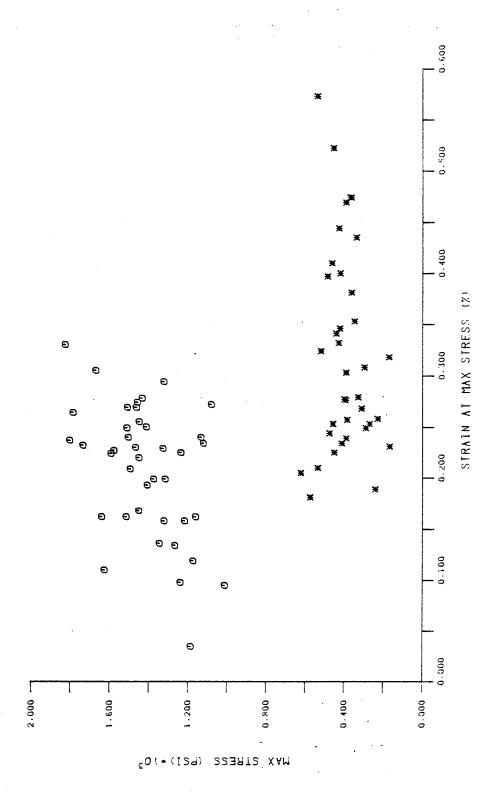


Fig. 2 - Maximum stress as a function of strain at maximum stress for $T = -20\,^{\circ}\text{C}_{\bullet}$

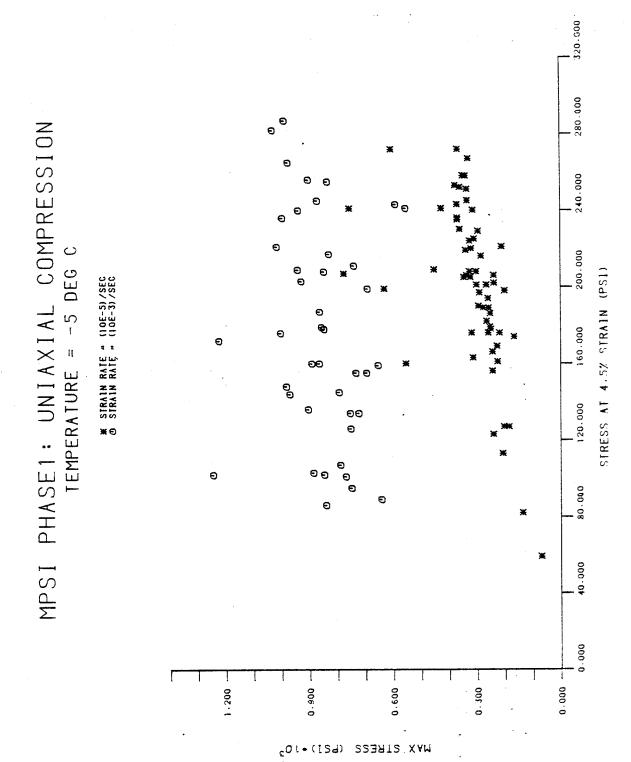


Fig. 3 - Maximum stress as a function of stress at 4.5% strain for $T = -5^{\circ}C$.

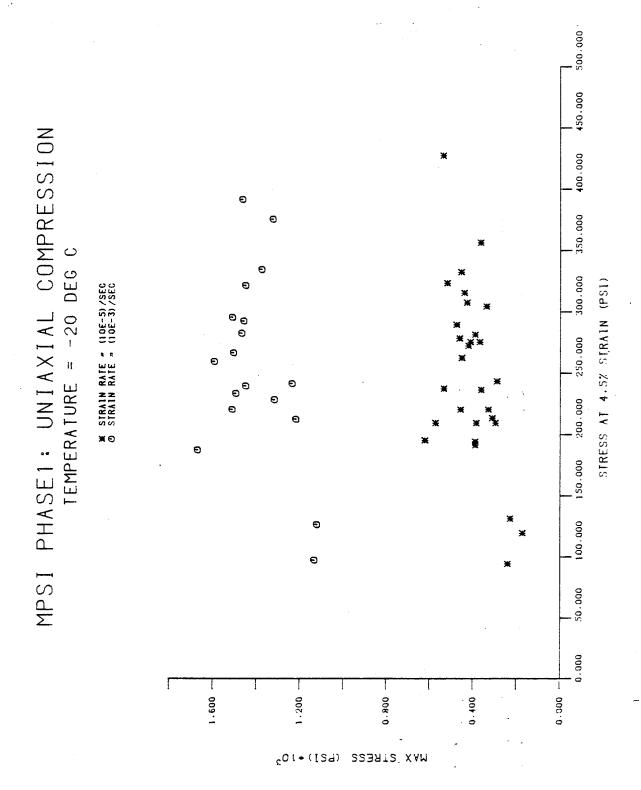


Fig. 4 - Maximum stress as a function of stress at 4.5% strain for $T = -20^{\circ}C$.

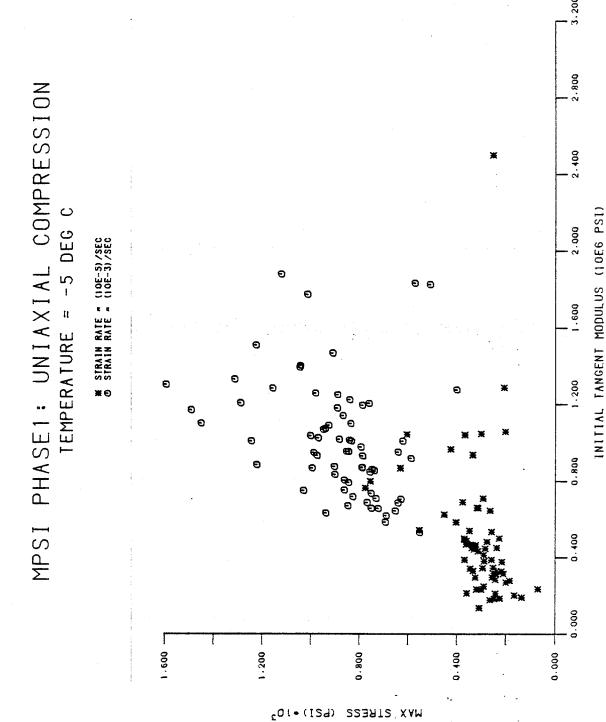
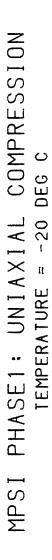



Fig. 5 - Maximum stress as a function of the initial tangent modulus for $T=-5\,{}^{\circ}\mathrm{C}_{\bullet}$

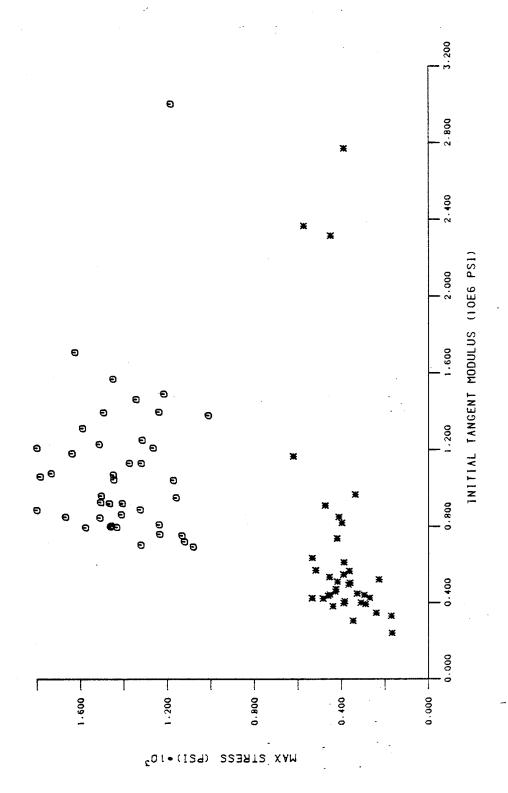


Fig. 6 - Maximum stress as a function of the initial tangent modulus for $T\,=\,-20\,^{\circ}\text{C}_{\bullet}$

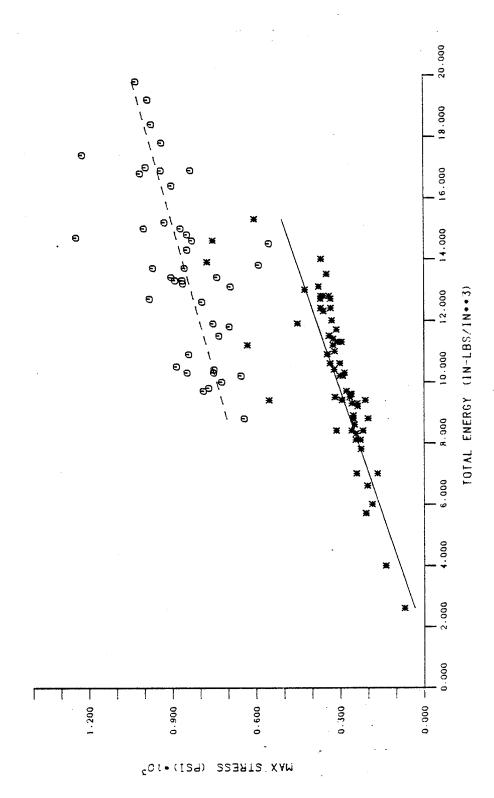
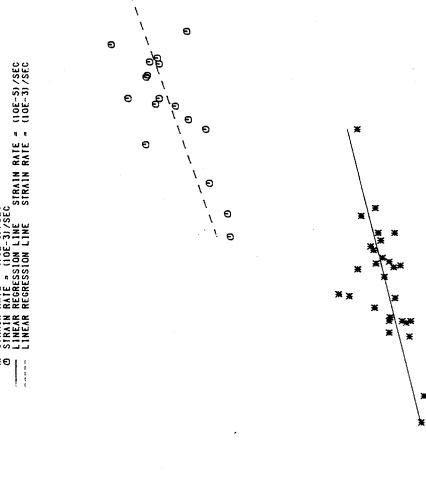



Fig. 7 - Maximum stress as a function of the total energy for $T = -5^{\circ}C$.

1.200 -

(621) +10₂

0.800

MAX STRESS

Ð

1.600 --

Fig. 8 - Maximum stress as a function of the total energy for $T = -20^{\circ}C$.

28.000

24.000

TOTAL ENERGY (IN-LBS/IN++3)

12.000

8.000

4.000

0.000

0.000

0.400

MPSI PHASE1: UNIAXIAL COMPRESSION TEMPERATURE = -5 DEG C

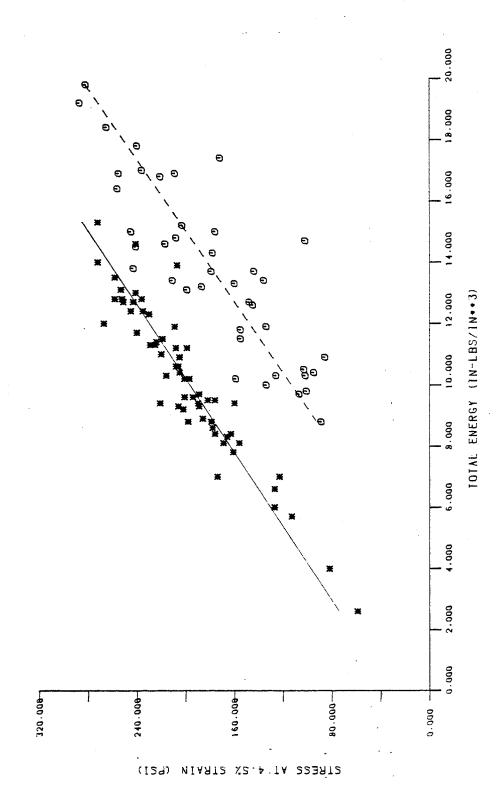


Fig. 9 - Stress at 4.5% strain as a function of the total energy for $T = -5^{\circ}C$.

MPSI PHASE1: UNIAXIAL COMPRESSION TEMPERATURE = -20 DEG C

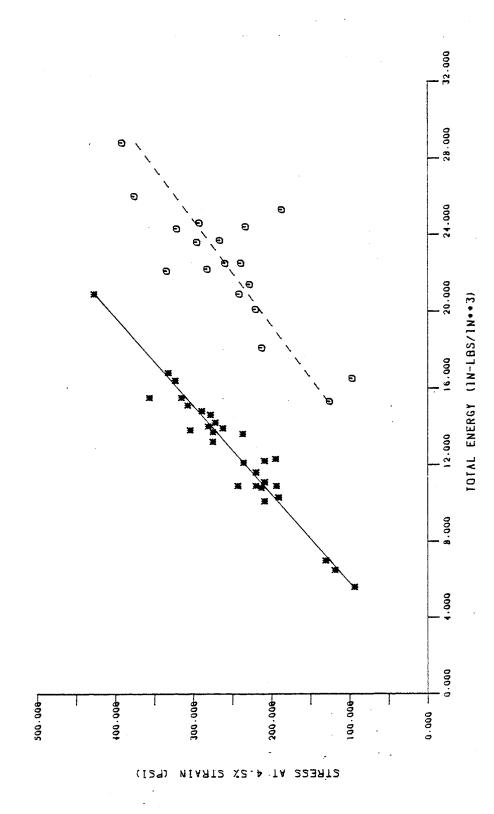


Fig. 10 - Stress at 4.5% strain as a function of the total energy for $T\,=\,-20\,^{\circ}\text{C}_{\bullet}$

for σ_{M} should be formulated in terms of energy dissipated up to peak strength (I_p). We investigate this possibility by plotting σ_{M} vs I_p in Figures 11 and 12. Regression lines are calculated for this property pair, and the regression parameters are listed in Table 20.

Comparison of the R^2 values in Table 20 shows a stronger correlation for the high strain rate test conditions (i.e., C35 and C320). The weaker correlations for the low strain rate test condition are probably a result of the flatness of the low strain rate stress-strain curve. There, the maximum stress is difficult to determine causing greater error in the calculation of I_P . Comparison of the R^2 values for σ_M in Table 20 with those in Table 19 shows a stronger correlation for the model based on I_T . In contrast to the σ_M vs I_T models, the σ_M vs I_P models show no similarity in slopes.

Failure and yield criteria have traditionally been formulated in stress space. However, some recent work in the theory of plasticity has suggested that a more natural formulation for failure criteria would be in strain space. This would be particularly true for a material such as ice which exhibits a strain-softening behavior. A stress formulation for the failure criterion of a strain-softening material would have to be double valued whereas a strain formulation would remain single-valued. Thus we seek correlations between the failure strain (i.e., strain at maximum stress), $\epsilon_{\rm M}$, and the energy dissipated at maximum stress. The $\epsilon_{\rm M}$ vs Ip ordered pairs for each test condition are plotted in Figures 13 and 14. Regression lines are calculated for each test condition, and the parameters are listed in Table 20. The high ${\rm R}^2$ values in Table 20 are to be expected since,

$$I_{p} = \int_{0}^{\varepsilon_{M}} \sigma(\varepsilon) d\varepsilon = f(\varepsilon_{M}).$$

However, we note the similarities in slopes for the two pairs of test conditions with constant strain rate. Regression lines are recalculated-by combining all data points for the two levels of constant strain rate. The combined regression lines along with the data points are shown in Figures 15 and 16, and the regression parameters are listed in Table 20. The high R^2 values for the combined data points indicate that a temperature independent model for $\epsilon_{\rm M}$ vs $I_{\rm P}$ is plausible. Again we note a stronger correlation for the high strain rate than the low strain rate.

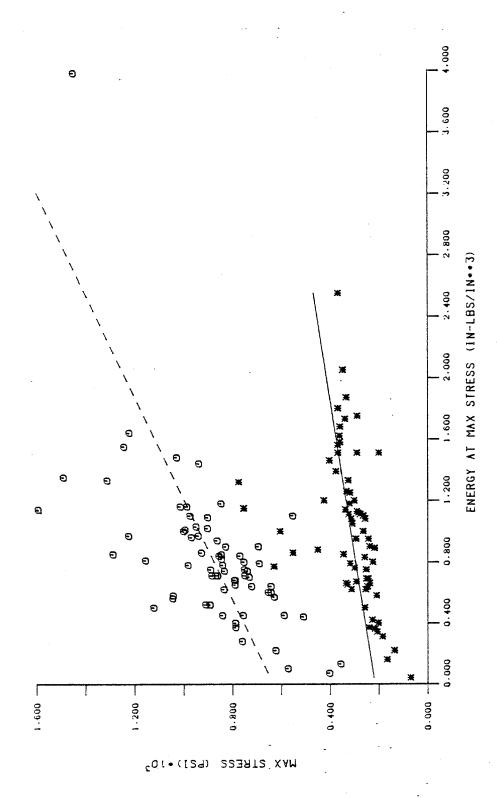


Fig. 11 - Maximum stress as a function of the energy dissipated at maximum

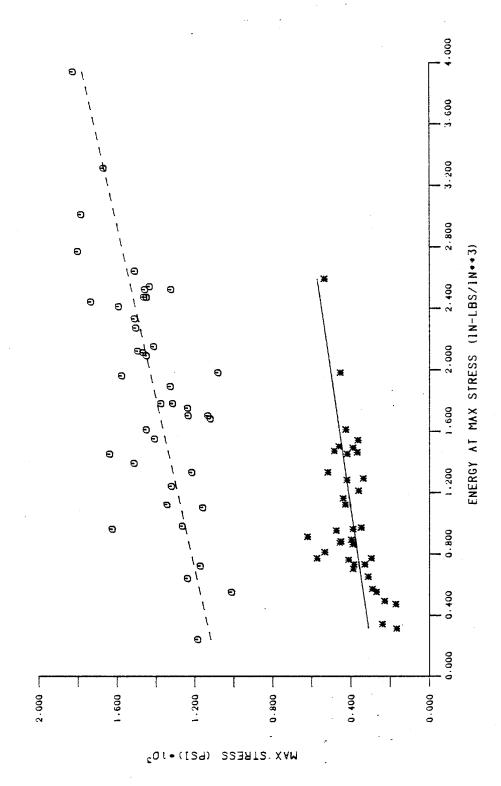


Fig. 12 - Maximum stress as a function of the energy dissipated at maximum stress for $T = -20^{\circ}C$.

46 BRC 45-85

Table 20

LINEAR REGRESSION MODELS BASED ON ENERGY DISSIPATED AT MAXIMUM STRESS

Independent Variable	Dependent Variable	Test Condition	Linear Coefficient	. Intercept	R ²
I _P	σ _M	C55	98.05	216.68	.15
Ip	м ^о м	C520	114.25	274.68	.28
IP	σ _M	C35	292.70	635.26	.40
I _P	$\sigma_{\mathbf{M}}$	C320	178.16	1075.01	.46
IP	ε _M	C55	0.285	0.112	.75
$\mathtt{I}_{\mathbf{P}}$	ε _M	C520	0.187	0.128	.79
IP	ε _M	C35	0.086	0.071	.76
I _P	$\epsilon_{ extsf{M}}$	C320	0.077	0.063	.87
IP	$\epsilon_{ extsf{M}}$	C55, C520	0.250	0.117	.67
IP	$\epsilon_{ extsf{M}}$	C35, C320	0.074	0.077	.85

 $\frac{\text{Table 21}}{\text{SUMMARY OF MEAN VALUES FOR I}_{p} \; (\text{in-lbf})/\text{in}^{3}}$

Ė	-5°C		-20°C	
10 ⁻⁵ /sec	1.014±.488		1.038±.473	
	67			37
10 ⁻³ /sec	69			41
10 ⁹ /sec	.836±.507		1.883	3±.770

MPSI PHASE1: UNIAXIAL COMPRESSION TEMPERATURE = -5 DEG C

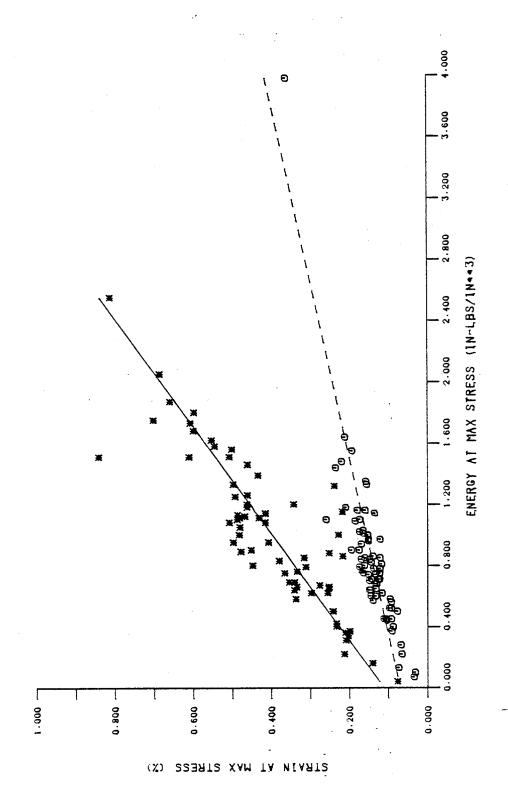


Fig. 13 - Strain at maximum stress as a function of the energy dissipated at maximum stress for $T = -5^{\circ}C$.

MPSI PHASE1: UNIAXIAL COMPRESSION TEMPERATURE = -20 DEG C

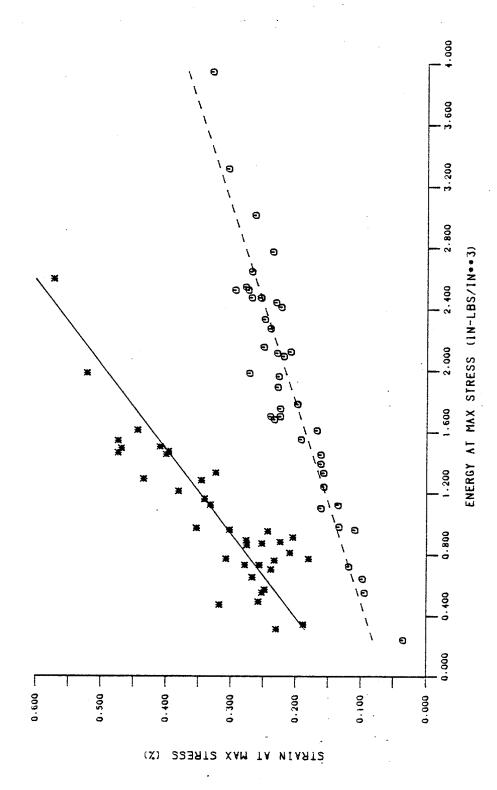
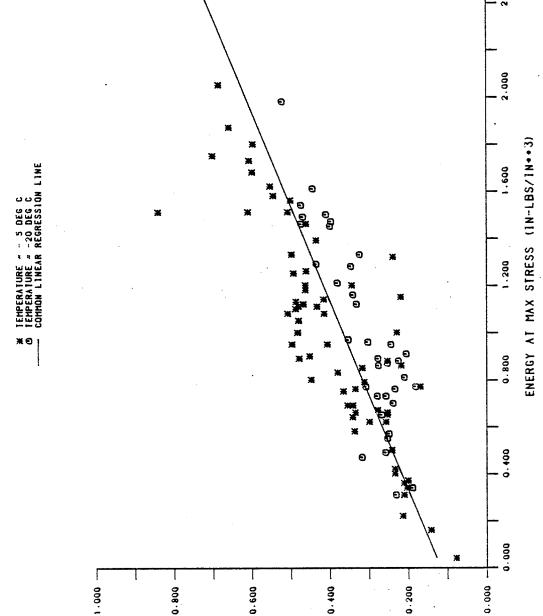
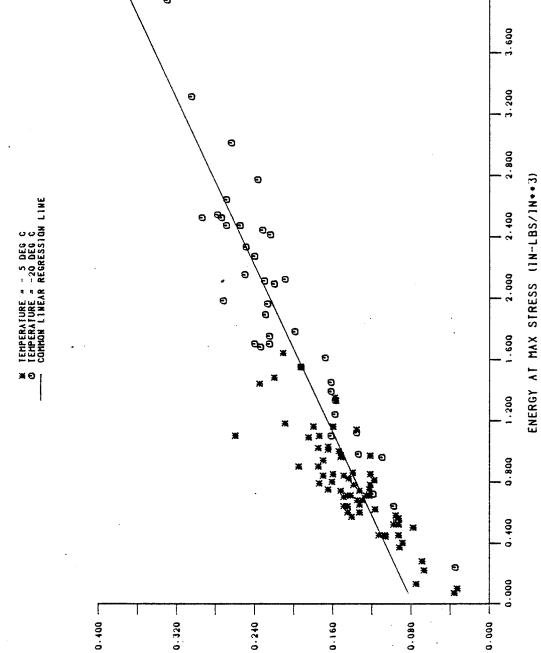



Fig. 14 - Strain at maximum stress as a function of the energy dissipated at maximum stress for $T = -20^{\circ}C$.

PHASE1: UNIAXIAL COMPRESSION STRAIN RATE = (10E-5)/SEC MPSI



0.400

STRAIN AT MAX STRESS

Fig. 15 - Strain at maximum stress as a function of the energy dissipated at maximum stress for $\dot\epsilon=10^{-5}/\sec$.

MPSI PHASE1: UNIAXIAL COMPRESSION STRAIN RATE. = (10E-3)/SEC

STRAIN AT MAX STRESS

Fig. 16 - Strain at maximum stress as a function of the energy dissipated at maximum stress for $\hat{\epsilon}=10^{-3}/{\rm sec}$.

4.000

The effects of temperature and strain rate on I_p are again investigated by conducting t-tests for the two levels of constant temperature and strain rate. The results are summarized in Table 21. This summary shows that at all four test conditions except for C320, the mean values of I_p are similar. If the mean value for C320 was similar to the other mean values, then we could hypothesize that the peak value for the stress-strain curve is associated with a critical value of energy independent of temperature and strain rate. This is a very attractive hypothesis and should not be abandoned without a closer examination of why the mean value of C320 is different from the others. One possibility for the difference is due to the fact that all tests are included in each sample population of a given test condition when calculating Ip. Selective editing of the tests according to ice type or failure mode could significantly change the mean values in Table 21 and hence change the conclusions of the pairwise t-tests. If editing of the data set proves fruitless, then a failure criteria based on $I_{\mathbf{p}}$ over a more restrictive temperature, strain rate regime should be investigated.

IDEALIZED STRESS-STRAIN RESPONSE

When discussing the mechanical response of a material, all mechanical properties should be taken into account before a general impression of the material's behavior can be made. The stress-strain curve for multi-year ridge ice is a nonmonotonic curve which has a peak stress at approximately .1-.4% strain and decreases to a fairly constant value at strains greater than 4% (see Mellor⁸ for a detailed account of the stress-strain behavior of ice). This type of curve can be characterized by the initial tangent modulus, the peak value of stress and the constant stress at large strains. We will attempt to define a single parameter which depends on these properties. This parameter would then provide a useful basis for comparing different stress-strain curves and discussing changes in the mechanical response with temperature and strain rate.

Engineers commonly characterize the mechanical response of materials in qualitative terms as being either brittle or ductile. This terminology is useful here, but the usual definitions of these terms must be modified before being applied to multi-year ridge ice. A ductile material is usually defined as a material that undergoes appreciable deformation before rupture (failure), whereas a brittle material undergoes very little deformation prior to rupture.

These definitions are not very suitable for ice since an ice sample tested at supposedly brittle conditions (e.g., 10^{-3} /sec strain rate) can still support loads at large strains.

More suitable definitions arise by considering the idealized response of a ductile and brittle material. A truly ductile material is often modeled as a perfectly plastic material whose characteristic stress-strain shape is a rectangle elongated along the strain axis. This model allows the material to flow indefinitely under a constant yield stress. A truly brittle material is often modeled as a linear elastic material whose stress-strain shape is a sharp ramp. This model allows the material to attain high stresses very rapidly and unloads instantaneously when the failure stress is reached. These two models, illustrated in Figure 17, are consistent with the usual definitions of ductile and brittle since plastic strains are usually quite large when compared to elastic strains. However, it is the shape of these models that should be kept in mind when classifying the response of multi-year ridge ice. A flat stress-strain curve with a fairly constant post-peak behavior is defined as a ductile response, and a sharp stress-strain curve with rapid unloading after the peak stress is defined as a brittle response. The notions of "flat" and "sharp" stress-strain curves will be quantified in the following sections.

ENERGY COMPONENTS

Perhaps the most appropriate mechanical property to describe mechanical response is the total dissipated energy since its calculation takes into account all aspects of the stress-strain curve. However, this quantity is not very useful in describing the shape of the stress-strain curve since no information is provided about its distribution in the stress-strain plane. The observation in a previous section that the residual stress appears to be rate independent suggests a useful decomposition of the total energy which would permit a quantitative measure of the shape of the stress-strain curve. If the residual stress is indeed independent of strain rate, then its contribution to the calculation of the total energy would also be rate independent. We define this rate independent contribution as the flow energy. This quantity is estimated by calculating the area of the trapezoid bound by the initial tangent modulus, the constant residual stress, the constant strain of 0.045, and the strain axis. Thus, the flow energy is given by the equation,

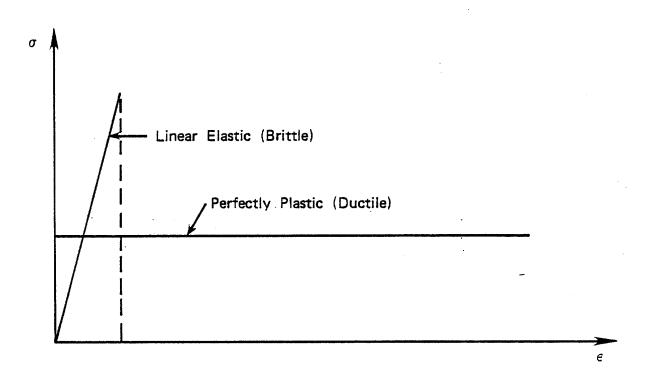


Fig. 17 - Schematic diagram of idealized material models.

84/411/07

$$I_F = \frac{1}{2} \left(0.09 - \frac{\sigma_R}{E_T} \right) \sigma_R \qquad .$$

The difference between the total energy (I_T) and the flow energy (I_F) would be the rate dependent contribution and is defined as the crushing energy (I_C). In some cases, it is possible that our estimation of the flow energy is greater than the total energy which would result in a negative crushing energy. In this event, the flow energy is set equal to the total energy, and the crushing energy is set equal to zero. Figure 18 is a schematic representation of the decomposition of the total energy. Similar to the summaries for the primary mechanical properties, the effects of temperature and strain rate on the mean values of flow energy and crushing energy are summarized in Tables 22 and 23. As expected, Table 22 shows the flow energy to be independent of strain rate, and Table 23 shows the crushing energy to increase with increasing strain rate.

STRESS-ENERGY PAIRS

Earlier, we saw that the two stress quantities, $\sigma_{\rm M}$ and $\sigma_{\rm R}$, are related to the total energy, and that relationship depends on temperature and strain rate. In the previous section, the total energy has been decomposed into rate dependent and rate independent parts via the quantities $I_{\rm C}$ and $I_{\rm F}$. With this decomposition, we can now create two conjugate stress-energy pairs which provide correlations independent of strain rate.

The first conjugate pair is formed from the rate dependent stress and energy quantities. In Figures 19 and 20, we plot $\sigma_{\rm M}$ as a function of $I_{\rm C}$ for the two levels of temperature. Figure 19 shows that there is a correlation between $\sigma_{\rm M}$ and $I_{\rm C}$ and that the correlation is independent of strain rate. A linear regression line is calculated for all points in Figure 19 and is found to be statistically significant with a R^2 value of 0.946. Figure 20 does not present such a strong argument for a $\sigma_{\rm M}$ vs $I_{\rm C}$ relationship independent of strain rate. The data points in this figure form two widely separated clusters of points according to strain rate. In this situation, we are guaranteed a good fit between the two clusters, but this does not necessarily mean that the clusters are correlated. Despite this fact, a regression line is calculated for the combined points in Figure 20, and, as expected, the regression line is statistically significant with a R^2 value of 0.929.

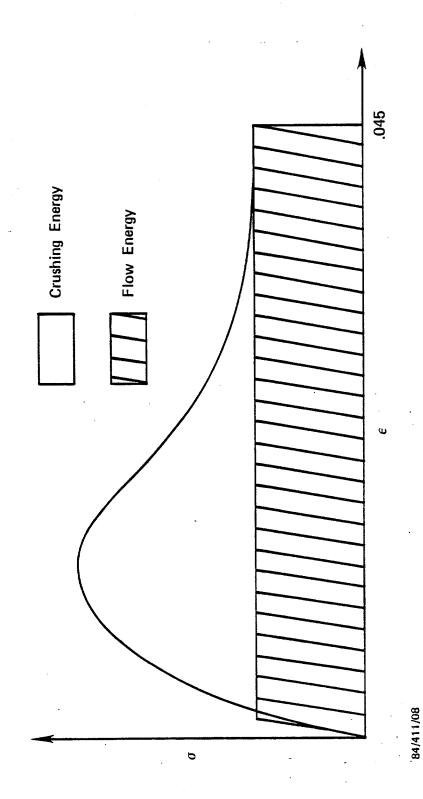
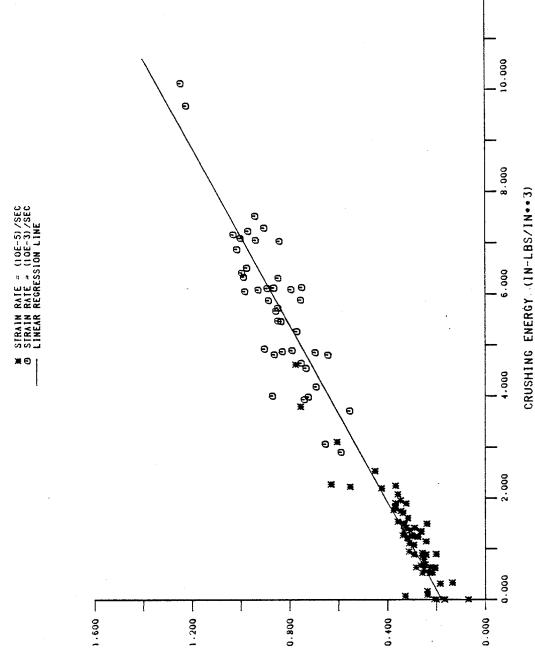


Fig. 18 - Schematic representation of flow energy and crushing energy.


 $\frac{\text{Table 22}}{\text{SUMMARY OF MEAN VALUES FOR I}_{F} \text{ (in-lbf)/in}^{3}}$

Ė	-5°C		-20°C	
10 ⁻⁵ /sec	8.92±1.97		11.12±3.16	
10 °/sec	61	I		29
10-3/	42	!		18
10 ⁻³ /sec	7.96±2.56		11.4	6±3.39

 $\frac{{\tt Table~23}}{{\tt SUMMARY~OF~MEAN~VALUES~FOR~I_{\tt C}~(in-lbf)/in^3}}$

Ė	-5°C		-20°C	
10 ⁻⁵ /sec	1.27±0.89		1.59±0.82	
.0 /303	61			29
10 ⁻³ /sec	42			, 18
10 9/sec	5.78:	±1.50	10.89	±2.13

WAX STRESS (PSI) +103

Fig. 19 - Maximum stress as a function of the crushing energy for $T = -5^{\circ}C$.

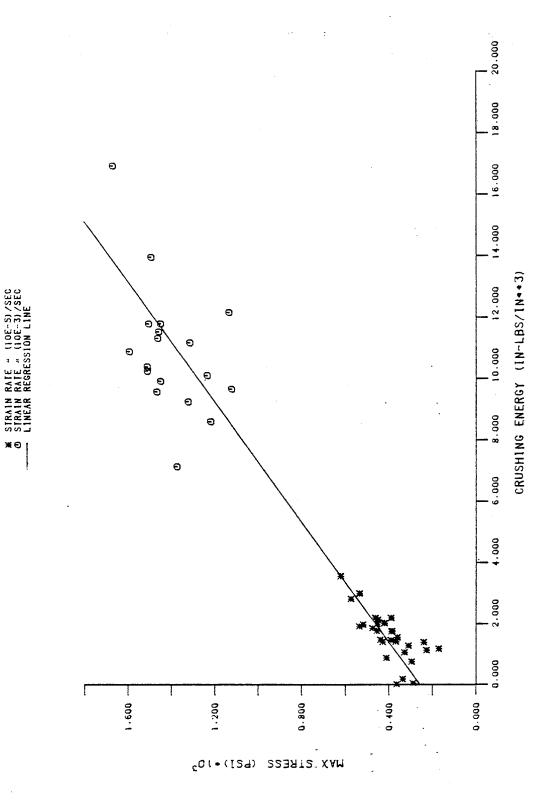


Fig. 20 - Maximum stress as a function of the crushing energy for T = -20° C.

The parameters for the regression lines in Figures 19 and 20 are summarized in Table 24. It is interesting to note that the intercepts for each line correspond closely to the mean residual stress for that temperature. This suggests that at a given temperature, the ratio $(\sigma_{\rm M} - \sigma_{\rm R})/I_{\rm C}$ is independent of strain rate. A comparison of the linear coefficients of the regression lines in Table 24 shows that they are in close agreement. This suggests that the only effect temperature has on the $\sigma_{\rm M}$ vs $I_{\rm C}$ relationship is to translate the regression line up or down by changing the temperature dependent value of the intercept $\sigma_{\rm R}$. Comparison of Figures 19 and 20 with Figures 7 and 8 shows that the subtraction of the rate independent flow energy from the total energy eliminates the translation of regression lines in Figures 7 and 8. This results in a single relationship between $I_{\rm C}$ and $\sigma_{\rm M}$ independent of strain rate.

The second conjugate pair is formed from the rate independent stress and energy quantites. In Figures 21 and 22, we plot σ_R as a function of I_F for each temperature. The resulting, almost exact correlation between σ_R and I_F in both figures is to be expected from our definition of the flow energy. The important point to note is that the data points for each strain rate have very similar distributions along the σ_R vs I_F line lending further support for the rate independence of σ_R and I_F . The strain rate dependent translations for the regression lines seen in Figures 9 and 10 are again eliminated from Figures 21 and 22 by subtracting the rate dependent crushing energy from the total energy.

The equation defining the flow energy can be considered a regression line relating σ_R and I_F with a R^2 value of 1.0. The parameters for this line are summarized in Table 24. This table serves the same purpose as Table 19 by relating stress and energy quantities. However, in Table 19, σ_M and σ_R are functions of the total energy whereas in Table 24, the dependent and independent variables are rate dependent and rate independent conjugate pairs of stress and energy. The number of regression lines in Table 24 have been reduced by a factor of two since the dependence on strain rate has been eliminated. Comparison of the R^2 values in both tables indicates that the decomposition of the independent variable, I_T , into rate dependent and rate independent components significantly reduces the scatter in the dependent variables σ_M and σ_R .

Table 24

LINEAR REGRESSION MODELS BASED ON CRUSHING ENERGY AND FLOW ENERGY

Independent Variable	Dependent Variable	Test Conditions	Linear Coefficient	Intercept	R ²
IC	^σ M	C55, C35	114.97	179.84	.95
IC	σ _M	C520, C320	102.03	260.63	.93
IF	^o R	C55, C35	$1/2 \left(09 - \frac{\sigma_R}{E_T}\right)$	0.0 σ _R	1.0
IF	^σ R	C520, C320	$1/2 \left(.09 - \frac{\sigma_{R}}{E_{T}}\right)$	0.0 σ _R	1.0

 $\frac{{\tt Table~25}}{{\tt SUMMARY~OF~MEAN~VALUES~FOR~I_C/I_F}}$

Ť	-5°C		-20°C	
10 ⁻⁵ /Sec	.138±.089		.157±.093	
10 /000	61			29
10 ⁻³ /sec	42	/		18
10 7/sec	.822±.400		1.088±.571	

* STRAIN RAIE # (10E-5) /SEC Ø STRAIN RAIE # (10E-3) /SEC

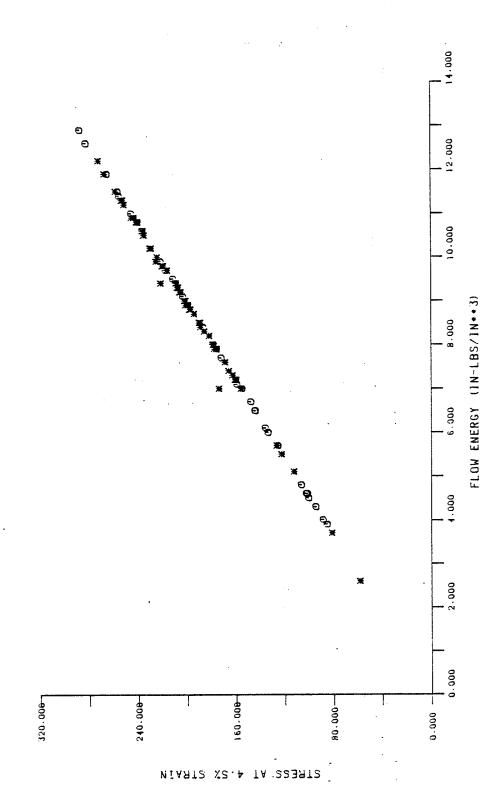


Fig. 21 - Stress at 4.5% strain as a function of the flow energy for T = -5°C.

MPSI PHASE1: UNIAXIAL COMRESSION TEMPERATURE = -20 DEG C

STRAIN RATE = (10E-5)/SEC Ø STRAIN RATE = (10E-3)/SEC

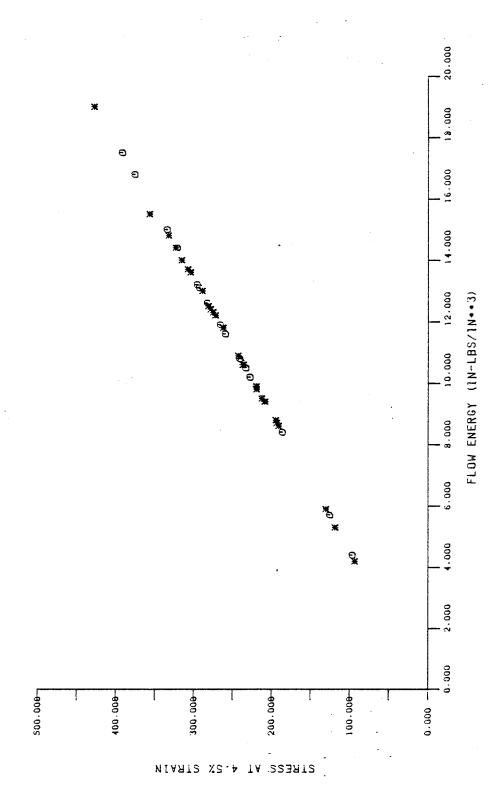


Fig. 22 - Stress at 4.5% strain as a function of the flow energy for $T=-20\,^{\circ}\text{C}_{\bullet}$

A PARAMETER FOR CHARACTERIZING THE STRESS-STRAIN RESPONSE OF MULTI-YEAR RIDGE ICE

The quantities I_C and I_F can now be combined to yield a parameter which describes quantitatively the ductility or brittleness of a given stress-strain curve. From Figure 18 we see that the "hump" of the stress-strain curve is described by the crushing energy which measures the amount of energy in excess of the flow energy. By calculating the ratio, I_C/I_F , we can identify with each stress-strain curve a number which represents its shape. A stress-strain curve with a low crushing energy relative to its flow energy would have a low I_C/I_F value and would be classified as ductile. A curve with a high crushing energy relative to its flow energy would have a high I_C/I_F value and would be classified as brittle.

In practice it is not very practical to calculate the quantity I_C/I_F . A quantity easier to calculate and serving the same purpose as I_C/I_F would be desirable. From Figures 19 and 20 we see that the crushing energy is proportional to $(\sigma_M - \sigma_R)$ and by definition the flow energy is proportional to σ_R . Thus, the ratio $(\sigma_M - \sigma_R)/\sigma_R$ would be proportional to I_C/I_F and would provide another quantitative measure of ductility or brittleness. Figures 23 and 24 illustrate the relation between I_C/I_F and $(\sigma_M - \sigma_R)/\sigma_R$ for each temperature.

By taking the limiting values of I_C/I_F and $(\sigma_M - \sigma_R)/\sigma_R$, we see that in the limit these ratios represent the stress-strain curves of the material models shown in Figure 17. When I_C/I_F and $(\sigma_M - \sigma_R)/\sigma_R$ equals zero, we have $I_C = 0$ and $\sigma_M = \sigma_R$. In this case the stress-strain curve would resemble a perfectly plastic material. When I_C/I_F and $(\sigma_M - \sigma_R)/\sigma_R$ become unbounded, we have $I_F = \sigma_R = 0$ and the stress-strain curve would resemble a brittle elastic material.

The mean values of the ratio, I_C/I_F , are summarized for each test condition in Table 25. This table shows that the ratio increases with increasing strain rate and is independent of temperature. The temperature independence is due to the proportional increases in the values of σ_M and σ_R with the decrease in temperature resulting in a relatively constant value of I_C/I_F . Thus, a change in temperature causes a proportional change in the shape of the stress-strain curve whereas a change in strain rate will distort the shape of the stress-strain curve. To illustrate the effects of temperature and strain rate on the mechanical response and the variability of

MPSI PHASE1: UNIAXIAL COMPRESSION TEMPERATURE = -5 DEG C

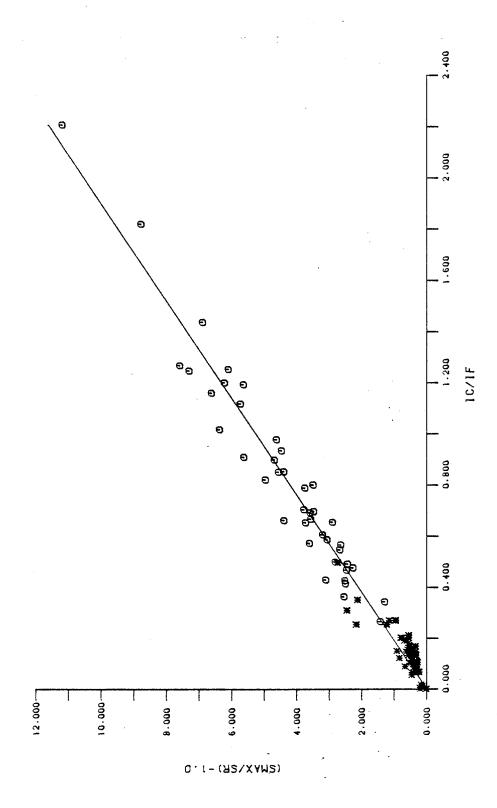
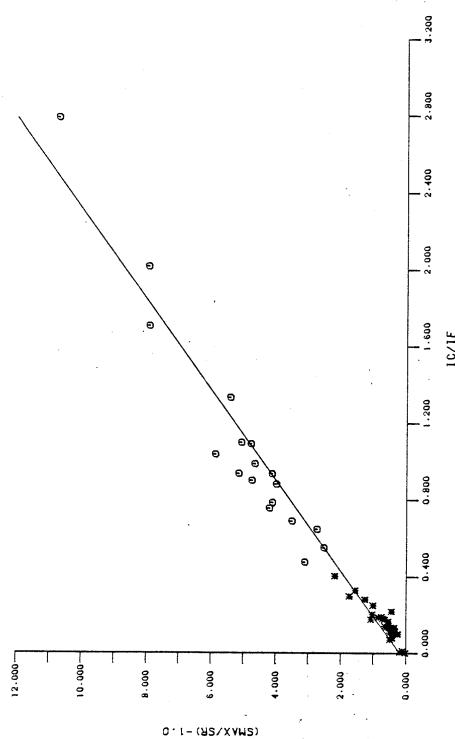


Fig. 23 - $\frac{\sigma_{\rm M} - \sigma_{\rm R}}{\sigma_{\rm D}}$ as a function of I_C/I_F for T = -5°C.


As de la discussión

as a function of I_C/I_F for T = -20°C.

اھ

MPSI PHASE1: UNIAXIAL COMPRESSION TEMPERATURE = -20 DEG C

the response within a given test condition, we choose the tests with maximum, minimum, and mean values of $I_{\rm C}/I_{\rm F}$ at each test condition. The stress-strain curves for these tests are shown in Figures 25-28 according to test condition. The remaining stress-strain curves can be found in Appendix C according to test conditions. The splines for each force-time history are listed in Appendix B.

"AVERAGE" STRESS-STRAIN CURVES

Finally, we would like to establish a method of defining a stress-strain curve which in some sense represents the average response of multi-year ice at each test condition. The most obvious method of doing this would be to calculate point by point averages of all stress-strain curves within each test condition and then plot those average values to obtain an average stress-strain curve. This was done for each test condition, and the resulting curves are shown in Figures 29 and 30 for T = -5°C and T = -20°C, respectively.

A much easier method of selecting an average curve would be to compare the primary mechanical properties of each test with the corresponding mean values. The "error" associated with each property is its difference from the mean. In order to compare the errors associated with the different properties, each error should be normalized with respect to the mean value. If the errors of each property are to be summed for each test, then each normalized error should be squared. Thus, we can calculate a residual error from the mean for each test from the equation,

$$E^{2} = \sum_{j=1}^{5} \left(\frac{x_{j} - \overline{x}_{j}}{\overline{x}_{j}} \right)^{2}$$

Here j denotes each of the five primary properties and the quantities x_j and x_j denote the actual and mean values, respectively, of the jth property. The residual errors for each test are summarized in Tables 26-29. The "average" stress-strain curve can now be chosen to be the curve with the minimum or least square of the residual error. The "average" curves chosen by the least squares method are shown in Figures 31 and 32.

A residual error for each curve obtained by pointwise averaging can also be calculated. These errors are listed in Table 30 along with the least

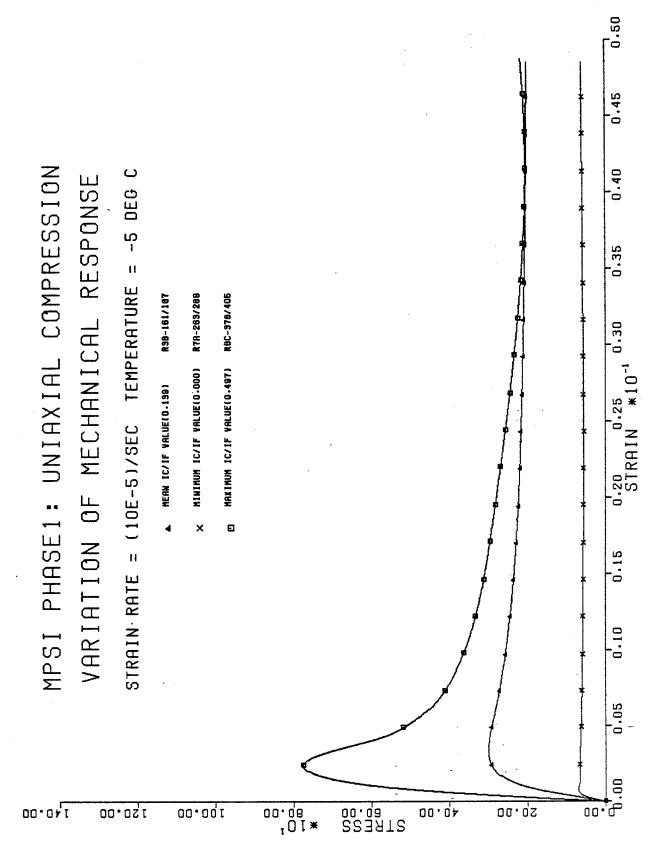


Fig. 25 - Variation of the mechanical response of multi-year ridge ice for $\dot{\epsilon}=10^{-5}/\mathrm{sec}$ and T = -5°C.

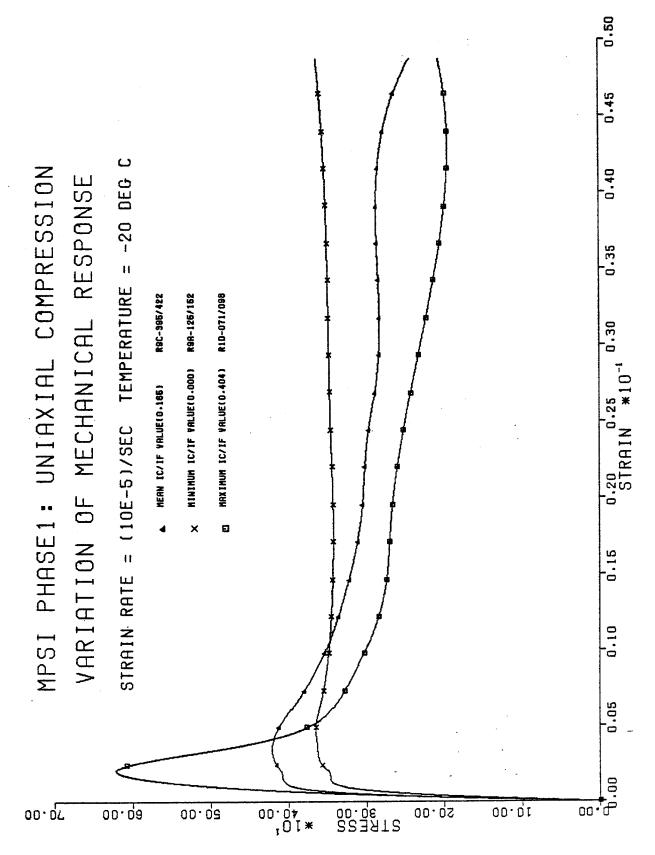


Fig. 26 - Variation of the mechanical response of multi-year ridge ice for $\dot{\epsilon} = 10^{-5}/\sec$ and $T = -20^{\circ}C$.

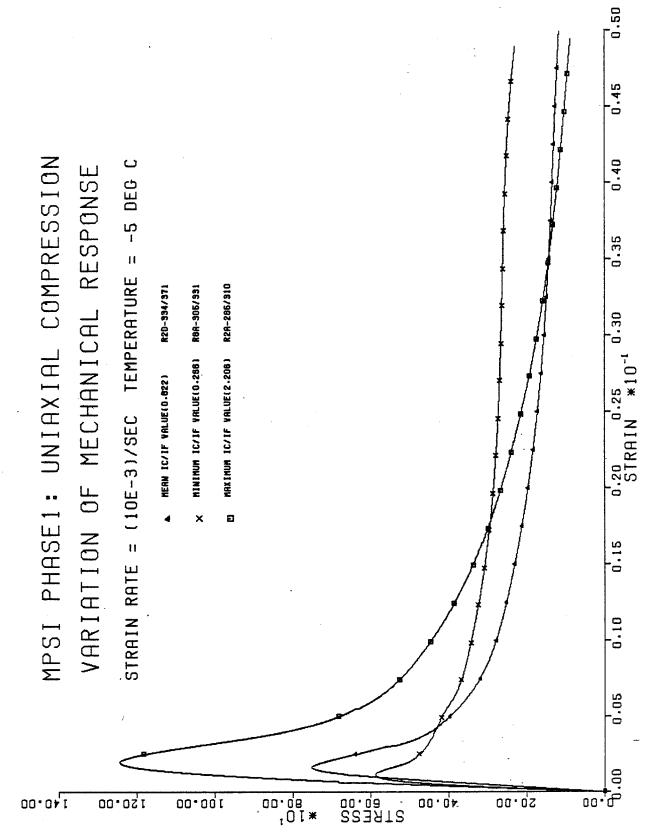
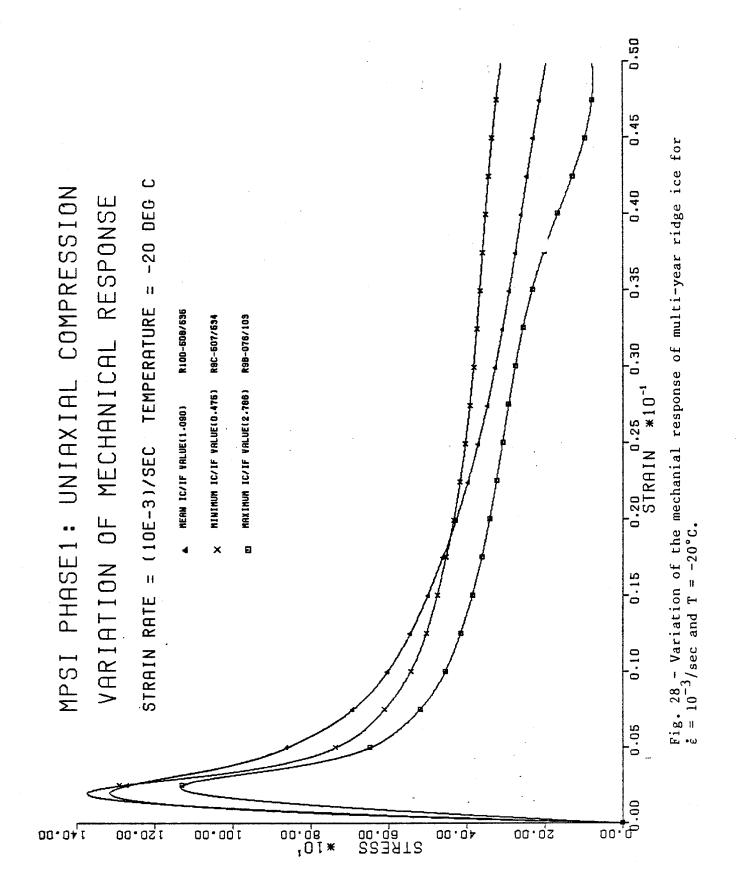



Fig. 27 - Variation of the mechanical response of multi-year ridge ice for $\dot{\epsilon}=10^{-3}/\sec$ and $T=-5\,^{\circ}\mathrm{C}_{\bullet}$.

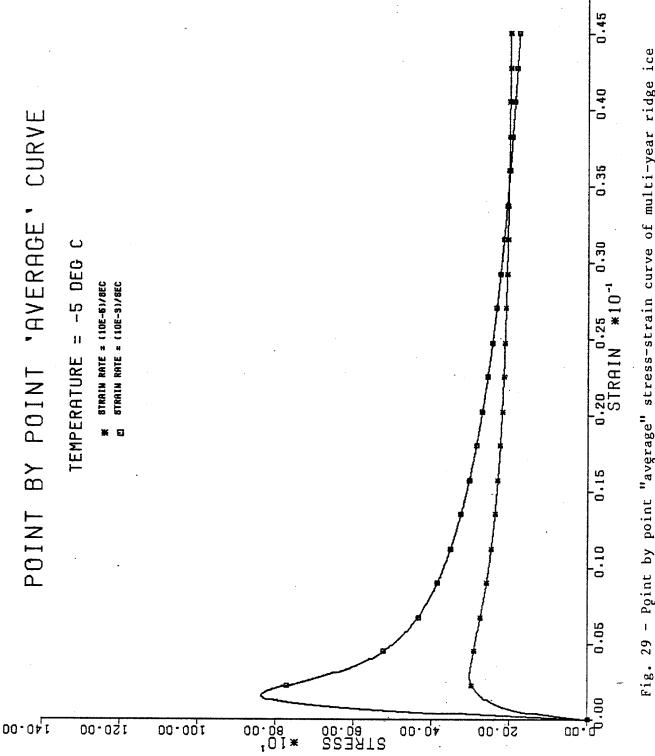


Fig. 29 - Point by point "average" stress-strain curve of multi-year ridge ice for $\dot{\epsilon}=10^{-5}/\text{sec}$ and $\dot{\epsilon}=10^{-3}/\text{sec}$ at T = -5°C.

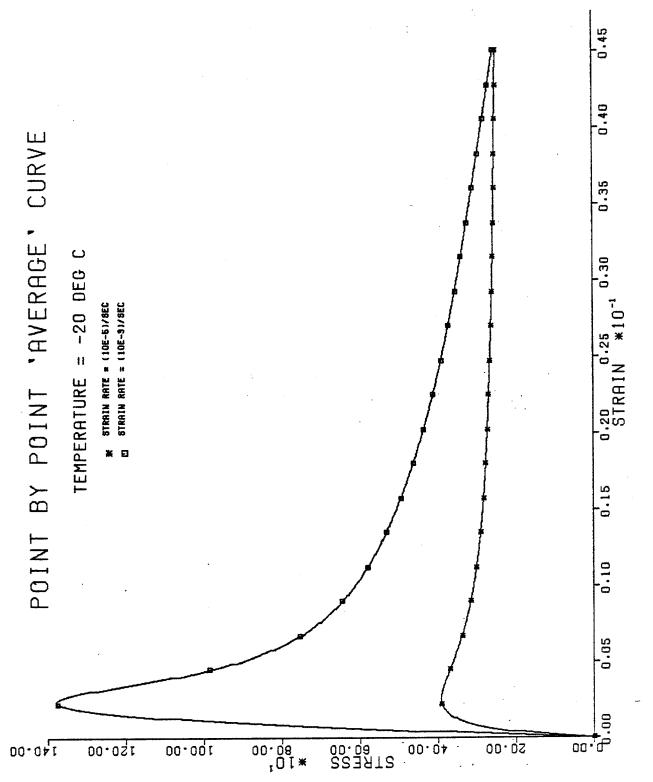


Fig. 30 - Point by point "average" stress-strain curve of multi-year ridge ice for $\dot{\epsilon}=10^{-5}/{\rm sec}$ and $\dot{\epsilon}=10^{-3}/{\rm sec}$ at T = -20°C.

73 BRC 45-85

NORMALIZED ERRORS
STRAIN RATE = (10E-5)/SEC TEMPERATURE = -5°C

Table 26

1.059 0.033 0.369 0.369 0.327 0.327 0.285 0.285 0.285 0.285 0.297 0.321 0.297 0.297	0.430 0.042 0.514
	1.257 0.942 0.844
13.0 10.4 12.8 12.4 10.2 14.6 12.3 11.4 12.3 12.3 12.0 6.6 8.1	12.8 9.6 8.6
1.896 0.917 0.969 0.395 0.648 0.454 0.947 0.959 0.642 0.884 0.578 0.578 0.578 0.578 0.527 1.354 0.617 0.982 0.982	0.916 1.049 0.360
0.965 0.467 0.467 0.493 0.201 0.231 0.211 1.041 0.327 0.450 0.294 0.177 0.268 0.268 0.212 0.314 0.500 0.441 1.286 1.056	
20 102 102 103 103 104 105 105 107 107 107 107 108 108 108 108 108 108 108 108 108 108	1.291 0.970 0.890
241. 205. 236. 174. 245. 201. 189. 272. 272. 272. 267. 198. 253. 230. 253. 253. 253.	258. 194. 178.
0.860 1.157 1.492 0.355 1.152 0.837 1.202 1.362 1.362 1.082 1.207 2.102 1.497 0.843 0.585 0.585	1.517 0.950 0.855
0.344 0.463 0.597 0.142 0.461 0.229 0.229 0.433 0.483 0.483 0.483 0.483 0.254 0.254	
1.344 1.015 1.164 0.528 1.053 0.949 0.772 1.917 2.388 1.136 0.753 1.025 0.636 1.189 1.189 1.189 0.667 0.721 0.667	1.072 0.819 0.784
425. 368. 167. 368. 321. 300. 277. 244. 606. 755. 359. 238. 324. 201. 376. 329. 228. 329.	339. 259. 248.
0.202 0.133 0.212 0.000 0.134 0.139 0.145 0.141 0.010 0.017 0.000 0.000 0.000 0.000 0.000 0.155 0.150	0.109 0.104 0.085
R1A-062/089 R1B-062/089 R2A-140/165 R2B-094/121 R3A-106/131 R3B-161/187 R4A-312/338 R4B-328/354 R5A-165/191 R5B-075/101 R7A-059/085 R7B-126/152 R8B-162/189 R3C-095/122 R3D-159/186 R5C-039/066 R5C-039/066 R5C-048/075 R8D-236/263 R1A-226/252 R1A-226/252	R2B-408/434 R2B-468/494 R3A-220/245
	(089 0.202 425 1.344 0.344 0.860 241 1.205 0.965 1.896 13.0 1.276 1.076 1.025 0.467 0.917 10.4 1.027 0.107 0.047 0.917 10.4 1.026 0.121 388 1.164 0.597 1.492 236 1.180 0.493 0.969 12.8 1.257 0.0 1/21 0.000 167 0.528 0.142 0.355 174 0.870 0.949 0.355 174 0.870 0.949 0.355 174 0.870 0.648 1.202 189 0.945 0.484 1.202 189 0.945 0.444 1.217 0.949 0.335 0.841 1.202 189 0.949 0.947 9.7 0.948 1.242 186 0.748 1.242 186 0.748 1.242 186 0.748 1.242 189 0.948 1.244 0.752 1.241 0.748 0.948 1.244 0.752 <

Table 26 (Cont'd.)

Ridge . ID	I _C /I _F	Σ υ	Norm ^G M	E _M	Norm E _M	σ _R	Norm ^o R	H.	Norm E _T	ΙŢ	Norm I _T	Total Res
			0 0	677 0	1 157	208	1.040	0.4	.05	10.6	•	 1
42		301.	206.0	t u	1 2	263	•			12.7	.2	
53/3	• 16	369.	1.16/	\sim \circ	767 0	176	0.880		29	9.5	9	_
/45	. 20	318.	00.	7	0 9	• 00 1	•	0.708	39	7.6	6	~
-391/41	•	293.	0.927	~ c		166	•	• •		. e	ထ	\mathcal{C}
9 /655-		244.	_ [0.333	1.000	200.	1, 125	• •	0.265	11.3	•	
_ `	•	309.	116.0	0.400	007.1	223	•	·		11.9		0.398
-442/4	77.	451.	1.427	707		200.	10		•	11.0	•	3
5A-504/53	0.123	519.	1.00%	707 0		220.	•	(,,	9.676	11.3	•	_
-398/4	0.105	. 44.		0.40	_	59.	•	~~	0.460	5.6	•	Š
-263/	0.000	71.	•	0.018	0.545	160.	•	0.542	1.065	9.4	0.923	0.818
2 3	0.310	, , , ,		0 448		161.		0.185	•	7.8	•	Š
-241/2	0.007	250	τ	0 24.0	•	176.	0.880	0.387	0.760	8.4	•	7
<u> </u>	0.000	621.	00	169	•	199.	•	•	•	11.2		1.827
	0.234	225	, ,	0.253	0.633	206.		•	1.839	10.6	1.041	0.845
R8B-333/339	0.140	238	1.060	0.416		219.	•	•		11.5		0.046
/CTC-	0.173	196	288		0.525	127.	•	•	0.546	0.9		ō.
	•	100.	•	0.341		186.	•	•	•	8.9		. 7
7/61;	<u> </u>	334	5			251.	•	•		12.7	1.247	•
2 5	+CT*O	000			1.217	197.	•	0.248	0.487	10.2	•	0.317
7/6	• -	957	· α	0.508		189.	0.945		5	9.3	6.	• 5
787/	0.101	369			. 27	235.	•		0.760	12.4	.21	• 7
7/577-	01.	206.			ı د	208	04		0	11.2	1.099	•
75/467-	7.9	010		0 7 7 0		92	•	.32	•	8.4	.82	٣,
ر / ک د / ک	٥ :	213	.07		. <	22		.03	.04		7	. 4
د/ 9 د/ و	• 14	300.	. TO		10	- 6	0	•	1.497	13.9	1.364	2.650
/8/	.49	.07		٠, د	• •	. 68	41	19			6	•
R8C-476/503	680 0	13/.	0.433	17.			•		!			

74 BRC 45-85

Table 26 (Cont'd.)

								I	3 R
Total Res	0.702	0.159	0.638	0.061	0.711	0.149	0.179	0.166	
Norm I _T	0.687	0.933	0.000	1.011	1.325	1.149	0.864	1.070	
I	7.0	9.5	0.0	10.3	13.5	11.7	8.8	10.9	
Norm EŢ	0.613	1.267	0.747	0.876	1.059	1.293	0.680	0.670	
EŢ	0.312	0.645	0.380	0.446	0.539	0.658	0.346	0.341	
Norm ^G R	0.615	0.910	000.0	1,080	1,291	1.200	0.895	1.025	
o _R	123.	182.	0	216.	258.	240.	179.	205.	
Norm ^E M	0.500	1.220	1.752	1.170	1.712	1.037	0.915	0.792	
ем	0.200	0.488	0.701	0.468	0.685	0.415	0.366	0.317	
Norm ^a M	0.762	0.838	0.914	0.898	1.101	0.990	0.800	1.094	
ω	241.	265.	289.	284.	348.	313.	253.	346.	
$^{ m I_C/I_F}$	0.270	0.164	0000	0.065	0.169	0.088	0.099	0.190	
Ridge ID	R8D-534/561	R9A-341/368	R9B-385/412	R9C-426/453	R10A-351/378	R10B-351/378	R10C-316/343	R10D-325/352	
	$^{I}_{\rm C}/^{I}_{\rm F}$ $\sigma_{\rm M}$ Norm $\epsilon_{\rm M}$ Norm $\sigma_{\rm R}$ Norm $E_{\rm T}$ Norm $^{I}_{\rm T}$ Norm $^{I}_{\rm T}$							$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

76 BRC 45-85

Table 27

NORMALIZED ERRORS STRAIN RATE = (10E-5)/SEC TEMPERATURE = -20°C

Ridge ID	$_{ m C/I_F}$	Ψ _D	Norm ^o M	ем	Norm ^E M	σR	Norm ^o R	EŢ	Norm E _T	$_{ m T}$	Norm I _T	Total Res
R1C-065/092 R1D-071/098	0.298	574.	1.459	0.181	0.562	209.	0.840	2.364	3.426	12.2	0.961	6.316
7,	•	429.	1.091	.33	.03	07	.23	.45	99.	5.		.2
29/1	.00	291.	•	.24	.77	4	.97	.39	. 56	0	œ	.3
R5D-121/148	0.071	412.	1.047	.23	.72	~	. 10	.84	. 22	۳,	o.	
6A-461/4	0	330.	•	.27	.86	α	88	44	.64	· .	ထ္	• 2
8C-165/19	.13	518.	.33	.32	90.	\sim	. 29	. 56	.82	•	~ -	ب د
R8D-192/219 R9A-125/152	0.142	365.	1.208	. 44 . 47	. 74.	\circ	43	56	81	14.0	7.	, ,
9B-043/07	•	338.	•	.43	.35	04	•	96.	.40	ω,	0.	
22	13	312.	0.793	.26	.83		.85	.40	.58	•	ထ္	2
R10D-157/184	.11	369.	•	.47	.47		.10	64.	.71	ж. •	0.	٠,
	. 18	385.	•	.25	. 79	0	.84	.40	. 59		∞	• 2
R1C-240/266		451.	1.147	.22	• 69	9	.05	.31	.35	ب	0	•
	•	534.	. 35	.21	• 65	3	. 95	.63	.91	•	•	• 2
-315/	.19	229.	. 58	. 25	80	(1)	. 52	. 52	.75	7	•5	. 7
7057	0.104	440	1.119	• 34	• 05	_	. 26	.38	.55	5.	• 5	÷,
_		454.	.15	.52	.62	~	• 33	• 44	•64	9	٣,	۲.
328/	0.250	390.	0.992	• 30	.94	9	. 78	• 76	.01	•	ဆ	Τ.
_	0.116	390.	.99	• 46	• 45	ထာ	. 12	• 39	.57	4.	Τ.	4.
_	0.175	462.	1.175	.41	.27		. 11	.43	0.632	4.	∹	• 2
_	٠,	241.	.61	• 18	• 58	5	.37	.34	.50	•	4.	1.267
R8D-477/504	0.219	173.	.44	.31	.98		.47	• 33	.48	6.	5	•
R8D-565/592	. 2	389.	0.989	.23	.74	9	.76	.61	0.884	0	∞.	
R9B-449/476	.08	297.	.75	• 30	.95	0	.84	.44	.63	0	۲.	• 5
R9C-395/422	0.165	421.	.07	.34	.07		• 00	.73	• 06	4.		•
R9D-317/344	0.145	362.	.92	• 38	. 18	236.	.94	.50	0.730	•	o.	
R10A-320/347	0.177	457.	1.162	.25	. 78	\sim	.88	\sim	.77	÷.	Q.	.14
R10B-418/445	0.100	536.	1.363	.57	۲.	7	.71	0.423	_	0	9.	
										-		

77 BRC 45-85

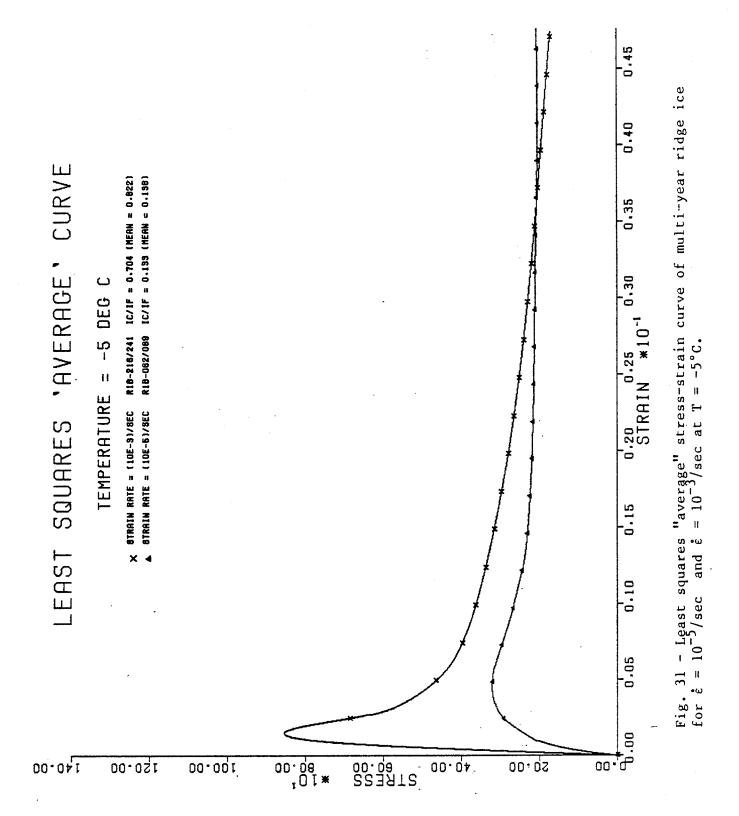
NORMALIZED ERRORS STRAIN RATE = (10E-3)/SEC TEMPERATURE = -5°C

Table 28

Ridge ID	$^{\rm I_C/I_F}$	Æ	Norm ^G M	e M	Norm ^E M	o ^R	Norm ^o R	ET	Norm ET	ΙΙ	Norm I _T	Total Res
/15	1.253	1222.	1.389	•	1.476	172.	0.970	0.883	0.874	17.4		0.465
R3A-188/213	0.667	927.	1.054	0.140	0.979	203.	1.144	•		15.2		0.042
┌ ;	•	870.	0.989	0.123	0.860	245.	۳,	1.140	1.129	•	•	0.190
R4B-299/325	1.268	885.	•	•	0.881	103.	.5	1.016	1.006	10.5	0.764	7
R2C-049/076	0.430	654.	•	•	1.014	159.	0.896	0.643	•	10.2		· ~
7	0.653	733.	0.833	•	•	155.	∞,	•		•	ထ	
\mathbb{C} :	0.587	847.	•	0.209	1.462	208.	1.172	0.670		14.8	.07	ຸຕຸ
7 .	1.017	789.	0.897	•	•	107.	0.603	0.929	•	7.6	.7	.2
R6A-504/531	0.500	829.	0.942	•	1.224	217.	1.223	•	•	14.6	0	Τ.
K/D-088/114	0.692	1014.	. 15	•	•	221.	1.246	•		16.8	1.223	0.717
R9C-080/107	0.428	905.	1.025	•	•	256.	1.443	0.833	0.825	16.4	Ţ	0.351
R9D-082/109	1.247	847.	•	•	•	102.	0.575	. 79	•	10.3	•	.306
RIB-216/241	0.704	856.	0.973	. 14	•	179.	•	•	0.944	13.7	•	•
	•	982.	1.116	. 12	•	148.	•	•	1.245	12.7	0.924	0.128
K2A-285/310	2.206	1244.	1.414	. 19	•	102.	0.575	1.008	•	14.7	•	4.
R2B-438/464	1.118	969.	1.101	.15	1.063	144.	•	1.024	•	13.7	0.997	•
K3A-401/427	0.850	890.	1.012	. 12	. •	9	0.902	.24	1.236	13.3	0.968	
K3B-239/265	0.477	834.	0.948	•	•	255.	1.437	1.007	•	•	1.230	•
K3B-331/35/	0.801	940.	1.068	•	1.063	209.	1.178	1.073	1.062	16.9	1.230	0
-398/	//6.0	754.	.85	⁻	•	134.	•	• 73	•	11.9	998.0	0.189
K4B-358/384	•	750.	0.852	•	.99	95.	0.535	0.859	0.850	•	0.757	٤,
K5A-4/3/499	0.789	846.	0.962	⁻.	1.007	178.	1.003	0.953	0.944		1.041	00
-370/3	0.934	793.	.90	•	.90	145.	0.817	.97	996.0		6	•
-232/2	•	723.	.82	•	1.014	134.	0.755	0.656	0.650	•		.28
K8A-305/331	0.266	590.	0.671	0.113	•	243.	1	0.916	0.907	•	•	
/32	٠	554.	.63	0.260	1.818	241.	1.358	0.531	0.526	•	0	16
R2C-196/223	0.573	862.	0.980	0.145	1.014	187.	2	0.804	1	13.2	0.961	.04

78 BRC 45-85

Ridge ID	$_{\rm I_C/I_F}$	ω _ω	Norm ^G M	ω ₃	Norm E _M	a _R	Norm ^o R	$\mathbf{E}_{\mathbf{T}}$	Norm E _T	Ţ	Norm IT	Total Res
000-078/305	0.468	691	0.785	0.174	1.217	199.	1.122	0.618	0.612	13.1	0.954	0.261
p2n-334/371	0.820	752	0.855	0.165	1.154	126.	0.710	0.657	0.650	10.3	0.750	0.314
PAC-614/461	0.415	740.	0.841	0.152	1.063	211.	1,189	0.854	0.846	13.4	0.975	060.0
R4C-512/539	1.819	841.	0.956	0,139	0.972	86.	0.485	1.011	1,001	10.9	0.793	0.311
R4D-495/522	0.00	631.	0.717	0.141	0.986	•	000.0	0.704	0.697	0.0	0.000	0.172
R7C-163/170	0.567	1029.	1.170	0.220	1,538	282.	1.590	0.749	0.742	19.8	1.441	0.928
R7C-541/568	0.898	1001	1,138	0.154	1.077	176.	0.992	1.035	1.025	15.0	1,092	0.034
0717-073 070-773/250	0.655	938.	1.066	0.235	1.643	240.	1,353	0.632	0.626	17.8	1,296	0.770
R7D-312/339	0.606	966	1,130	0,165	1.154	236.	1,330	0.867	0.858	17.0	1.237	0.226
CSC/21C G/N BQA-645/482	1.200	643.	0.731	0.149	1.042	89.	0.502	0.685	0.678	8.8	0.641	0.555
R9C-332/359	0.697	695	0.790	0.195	1.364	155.	0.874	0.584	0.578	11.8	0.859	0.390
926/366 OCM	1.160	770.	0.875	0.170	1.189	101.	0.569	0.687	0.680	0 ھ	0.713	0.421
812/2+3 GCN 810A-269/296	0.492	987.	1,122	0.180	1.259	287.	1.618	0.947	0.938	19.2	1.398	0.625
D108-276/301	0.548	974.	1,107	0.174	1,217	265.	1.494	0.932	0.923	18.4	1,339	0.423
R10D-231/258	1,193	903.	1.026	0.175	1.224	136.	0.767	0.874	0.865	13.4	0.975	0.124


Table 28 (Cont'd.)

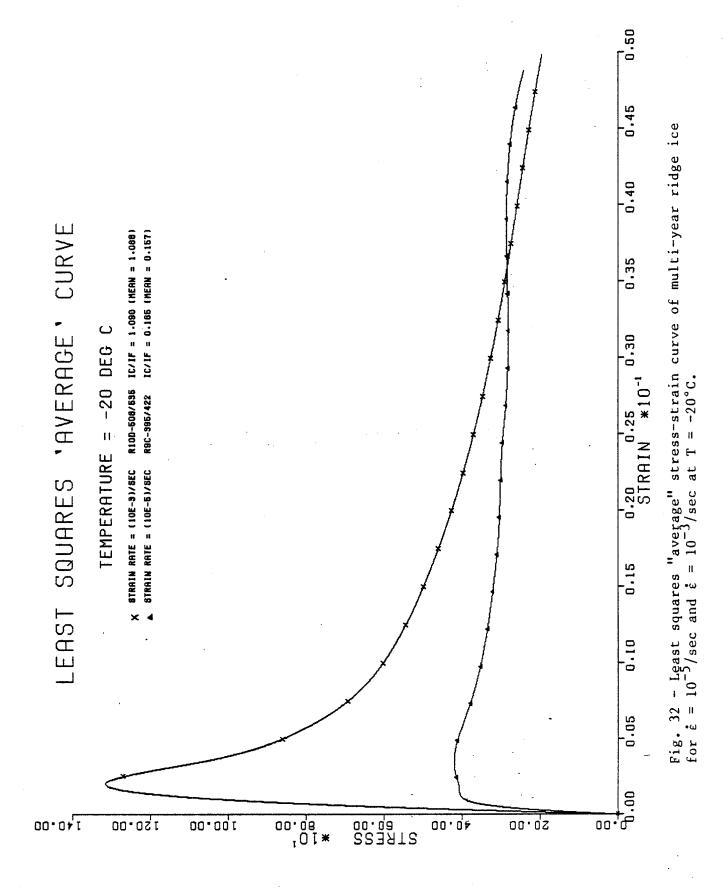

79 BRC 45-85

Table 29

NORMALIZED ERRORS STRAIN RATE = (10E-3)/SEC TEMPERATURE = -20°C

Ridge ID	I _C /IF	ω _ω	Norm o _M	Σ	Norm E _M	a a	Norm ^G R	E T	Norm E _T	LI	Norm I _T	Total Res
R6A-531/558 R9B-076/103 R9C-049/076 R9D-150/177 R10B-084/111 R2C-226/253 R2C-482/509 R4D-382/409 R4D-382/409 R4C-559/586 R7C-457/484 R7D-254/281 R7D-254/281 R7D-546/573 R9C-507/534 R10A-407/434 R10B-449/476	0.900 2.786 0.784 0.935 1.331 1.036 1.097 2.014 0.550 0.986 0.550 0.986	1217. 1134. 1509. 1592. 1493. 1510. 1449. 1449. 1669. 1323. 1374. 1466.	0.863 0.804 1.070 1.129 1.058 1.071 0.795 1.027 1.027 1.086 0.938 1.066 0.974 1.037	0.158 0.240 0.269 0.224 0.229 0.234 0.255 0.305 0.294 0.294 0.294 0.296 0.269	0.756 1.148 1.287 1.072 1.000 1.191 1.120 1.311 1.220 1.459 1.467 1.148 0.952 1.287	212. 97. 295. 295. 259. 220. 126. 321. 292. 292. 292. 293. 375. 266. 334.	0.830 0.380 1.155 1.014 0.912 0.861 0.493 1.257 1.143 0.936 0.732 1.468 1.041 1.308 1.531 1.104	1.489 0.751 0.925 1.310 1.392 0.844 0.719 1.068 0.868 0.848 0.959 1.129 0.797 0.797	1.312 0.662 0.815 1.154 1.226 0.744 0.633 0.919 0.747 0.619 0.845 0.995 0.995	18.1 16.5 23.6 22.5 24.4 20.1 15.3 24.6 22.3 26.0 23.7 22.1 28.8 22.2	0.810 0.738 1.056 1.007 1.092 0.899 0.685 1.007 1.101 1.163 1.060 0.989 0.989	0.241 0.628 0.149 0.046 0.071 0.137 0.214 0.060 0.398 0.561 0.059 0.059
R10D-508/535	1.090	1315.	0.932	0.199	0.952	228.	0.893	1.249	1,100	21.4	0.957	0.030

82 BRC 45-85

Table 30

COMPARISON OF RESIDUAL ERROR
FOR THE TWO AVERAGING TECHNIQUES

Test Condition	Point by Point Averaging	Least Square Averaging
C55	.100	.033
C520	.060	.037
C35	.083	.006
C320	.046	.030

Table 31

STRUCTURAL CLASSIFICATION SCHEME FOR MULTI-YEAR PRESSURE RIDGE ICE SAMPLES

Ice Type	Code	Structural Characteristics
Granular	1	Isotropic, equiaxed crystals
Columnar	2	Elongated, columnar grains
	2A	Columnar sea ice with c-axes normal to growth direction. Axes may not be aligned
	2В .	Columnar sea ice having random c-axis orientation (Transition ice)
	2C	Columnar freshwater ice. May be either anisotropic or isotropic
Mixed	3	Combination of Types I and II
	3A	Largely Type II with granular veins
	3B	Largely Type I with inclusions of Type I or II ice (brecciated ice).

square error for each test condition. Comparison of the errors for each test condition shows that the least square method of selecting an average curve provides a better "average" since this method yields a curve which better reflects the average primary mechanical properties.

Tables 26-29 contain the values of $I_{\rm C}/I_{\rm F}$ for each test in addition to the residual errors. These tables suggest that the quantity $I_{\rm C}/I_{\rm F}$ provides another possible method of choosing an average stress-strain curve. Tests with low residual errors have values of $I_{\rm C}/I_{\rm F}$ very close to the mean value of $I_{\rm C}/I_{\rm F}$.

PHYSICAL PROPERTIES

It is well documented in the literature (e.g., see Weeks and Ackley9) that the physical properties of ice significantly affect its mechanical response. The six physical properties most commonly recorded to characterize an ice sample are salinity, density, brine volume, air volume, total porosity, and crystal structure. The crystal structure of an ice sample depends greatly on the temperature and other environmental conditions at the time of crystallization. However, once the structure is formed, it can exist over a wide range of temperatures and can be considered independent of temperature. The other five properties are governed by the phase diagrams for solid seawater and consequently are functions of temperature. Frankenstein and Garner 10 have derived an equation relating salinity and brine volume in the temperature range from -2°C to -30°C. Over this same temperature range, Cox and Weeks have derived equations to calculate the air volume if the salinity and density are known. Once the air volume is known, the total porosity can be calculated as the sum of the air and brine volumes. Thus, we see that of the five temperature dependent physical properties, only two are independent. Any two of these properties along with the crystal structure are sufficient to describe the effects of physical properties on the mechanical response of ice.

Given the temperature, it is easy to specify the temperature dependent physical properties from a few simple laboratory measurements and application of the equations referred to above. Specifying the crystal structure is not as straightforward since a classification scheme has to be developed which accounts for crystal shape (e.g., columnar, granular), c-axis orientation, and grain size. Previously, Cherepanov¹¹ and Michel¹² have devised

classification schemes for undeformed ice, but these are not suitable for multi-year ridge ice. In addition to continuous regions of granular and columnar ice types, multi-year ridge ice can contain regions of discontinuous structure such as snow filled voids, block interfaces, and healed cracks. Richter and Cox³ have developed a classification scheme to encompass all possible ice types in multi-year pressure ridges. Their scheme is summarized in Table 31 and is applied to high, intermediate, and low strength samples from test conditions C55 and C35 in Tables 32 and 33, respectively.

The salinity, density, brine volume, air volume, and porosity are listed for each test in Tables 34-37 according to test conditions. Since these properties depend on temperature, the data from the two pairs of test conditions with the same temperature can be combined into a single data file. Descriptive statistics are calculated for each of the combined data files and are summarized in Tables 38 and 39 for -5°C and -20°C, respectively. These two tables also contain a similar statistical summary of the properties of the samples tested at each strain rate. Comparison of the combined statistics with the statistics for each strain rate indicates that, on the average, the ice tested at different test conditions has the same temperature dependent physical properties.

To demonstrate the effect of physical properties on the mechanical properties, the maximum stress and initial tangent modulus are plotted as functions of the total porosity for each test condition in Figures 33-40. In each figure, a line is drawn to approximate an upper bound for the given mechanical property and test condition. These upper bounds show the maximum stress and initial tangent modulus to decrease with increasing porosity as one would expect. Since strength and the tangent modulus are known to decrease with increasing brine volume, the test samples with a brine volume of less than 5°/00 are distinguished from the others to investigate the possibility of those samples being the upper bound for those properties. The upper bound is determined by low brine volume samples in Figures 34 and 36, but brine volume alone does not determine the upper bound since low brine volume samples are also associated with lower bound values of strength and tangent modulus. Consideration of ice structure would probably explain the lower values of strength and tangent modulus associated with the low brine volume samples.

To demonstrate the effects of crystal structure, the data points having a crystallographic classification are identified in Figures 33, 35, 37,

85 BRC 45-85

Table 32 STRENGTH, STRUCTURE, AND POROSITY OF SELECTED RIDGE ICE SAMPLES* TESTED AT $\dot{\epsilon}$ = 10⁻⁵/SEC AND T = -5°C

Ridge ID	Strength (lbf/in ²)	Ice Type	Grain Size (mm)	Porosity (°/°°)
High Strength				
R1B-320/346	1090	2A-Aligned 0° Elongation	55 × 10	25.3
R5B-075/101	774	2A-Aligned 5° Elongation	17 × 6	72.3
R1B-429/455	696	2A 5° Elongation	15 × 10	23.7
R8A-432/458	657	2A-Aligned 5° Elongation	30 × 5	24.5
R5A-165/191	619	2A 0° Elongation	15 × 3	16.9
R7A-342/368	607	2C 0° Elongation	2 to 20	24.4
Intermediate S	trength		•	
R3B-363/387	394	3B	< 1	15.3
R2A-140/165	388	1	2	10.1
R5B-341/367	· 368	1	< 1	56.1
R7A-059/082	361	1	< 1	69.5
R8B-515/541	348	2B	20 x 5	23.8
Low Strength				
R7B-241/267	229	3	5	77.8
R1A-226/252	214	2A 40° Elongation	25 × 15	19.4
R1A-399/425	214	3		38.9
R2B-094/121	171	3B	< 1	143
R7A-263/286	68	3A 40° Elongation	35	154
* From Cox, et	a1.1			

86 BRC 45-85

STRENGTH, STRUCTURE, AND POROSITY OF SELECTED RIDGE ICE SAMPLES* TESTED AT $\dot{\epsilon}$ = 10⁻³/SEC AND T = -5°C

Ridge ID	Strength (1bf/in ²)	Ice Type	Grain Size (mm)	Porosity (°/)
High Strength				
R1A-300/326	1580	2A-Aligned O° Elongation	55 × 10	20.3
R7B-440/466	1540	2A-Aligned 5° Elongation	45 × 10	32.0
R8B-483/509	1440	2A-Aligned 15° Elongation	50 × 15	25.6
R8A-384/410	1297	2A 0° Elongation	40 × 10	24.2
R2A-285/310	1270	2A 10° Elongation	25 × 15	22.3
R1A-175/201	1270	2A 80° Elongation		16.2
R5B-141/167	1270	2A 0° Elongation	45 × 25	21.1
Intermediate S	trength			
R3B-331/357	971	3B	< 1	31.4
R3A-188/213	970	3	5	23.5
R3A-401/427	925	3	< 1	21.0
R1B-216/241	915	2A 40° Elongation	35 × 20	16.3
R4B-299/325	910	3	2 to 10	56.2
R4B-420/466	910	3A	35 × 10	53.0
Low Strength	•			•
R8B-300/326	587	3	-	15.1
R7B-175/201	557	2C 50° Elongation	5	23.3
R7B-072/098	487	3	-	53.4
R2A-110/135	408	1 -	< 1.	86.9
R8A-033/059	346	3	- .	75.2

^{*} From Cox, et al. 1

Table 34

PHYSICAL PROPERTIES

STRAIN RATE = (10E-5)/SEC TEMPERATURE = -5°C

Ridge	Salinity Test SX	Density Test SX	Brine Volume	Air Volume	Porosity	Ice Type
ID	(0/00)	(1b/ft ³)	(0/00)	(0/00)	(0/00)	Type
R1A-062/089	1.80	55.05	17.1	41.9	59.0	
R1B-062/089	0.30	54.54	2.8	48.4	51.3	
R2A-140/165	0.10	56.77	1.0	9.1	10.1	1
R2B-094/121	0.44	49.35	3.7	139.2	143.0	3B
R3A-106/131	0.60	55.61	5.8	30.1	35.9	
R3B-161/187	1.13	56.92	11.1	8.1	19.2	
R4A-312/338	1.60	53.92	14.9	61.2	76.1	
R4B-328/354	1.57	56.11	15.2	22.9	38.1	
R5A-165/191	0.41	56.58	4.0	12.9	16.9	2A
R5B-075/101	1.80	54.26	16.9	55.5	72.3	2A
R7A-059/085	1.70	54.37	15.9	53.6	69.5	1
R7B-126/152	0.40	51.90	3.6	94.6	98.2	
R8A-133/159	1.00	55.95	9.7	24.8	34.5	
R8B-162/189	0.82	56.36	8.0	17.4	25.4	
R3C-095/122	0.54	54.87	5.1	42.9	48.0	
R3D-159/186	0.26	49.39	2.2	138.2	140.5	
R5C-039/066	1.27	53.10	11.6	75.0	86.6	
R5D-159/186	0.58	56.15	5.6	20.7	26.3	
R6C-166/193	0.45	50.74	3.9	114.8	118.8	
R8C-048/075	0.56	54.28	5.2	53.4	58.6	
R8D-236/263	0.50	54.74	4.7	45.1	49.8	
R1A-226/252	1.26	57.00	12.4	7.0	19.4	2A
R1A-399/425	2.40	56.62	23.4	15.4	38.9	3
R2A-205/230	0.38	55.32	3.6	35.0	38.6	
R2A-314/339	2.10	56.79	20.6	12.0	32.5	
R2B-408/434	0.80	55.82	7.7	26.9	34.6	
R2B-468/494	0.70	55.91	6.8	25.2	32.0	
R3A-220/245	1.61	57.06	15.8	6.5	22.3	
R3A-430/456	2.18	56.21	21.1	22.2	43.3	
R3B-363/389	0.89	56.99	8.7	6.5	15.3	3B
R4A-426/452	1.30	55.79	12.5	28.2	40.8	
R4B-391/417	2.27	56.42	22.1	18.7	40.8	
R4B-449/475	1.83	56.51	17.8	16.4	34.2	
R5A-397/423	0.80	56.44	7.8	16.0	23.8	
R5A-442/468	1.09	56.73	10.7	11.4	22.1	
R5A-504/530	1.23	56.47	12.0	16.1	28.1	-
R5B-341/367	0.79	54.57	7.4	48.7	56.1	1
R5B-398/423	1.13	56.37	11.0	17.7	28.7	
R7A-263/289	3.03	50.22	26.3 -	127,6	153.9	3A
R7A-342/368	1.05	56.57	10.2	14.1	24.4	2C
R7B-241/267	1.30	53.63	12.0	65.8	77.8	3
R8A-164/190	1.20	56.45	11.7	16.4	28.1	
R8A-432/458	1.80	57.06	17.1	6.8	24.5	2A
R8B-333/359	1.50	57.04	14.8	6.7	21.4	

88 BRC 45-85

Table 34 (cont'd)

				•		
Ridge ID	Salinity Test SX (0/00)	Density Test SX (1b/ft ³)	Brine Volume (0/00)	Air Volume (0/00)	Porosity (0/00)	Ice Type
R8B-515/541	·····	57.10	17.7	6.1	23.8	2B
R3C-296/323	1.80 1.62	55.91	15.6	26.5	42.2	25
		55.33	12.2	36.1	48.3	
R3C-380/407	1.28	53.43	11.8	69.3	81.1	
R3D-219/246	1.28		13.1	23.7	36.8	
R3D-287/314	1.36	56.05		30.2	42.6	
R5C-219/246	1.29	55.67	12.4	25.8	61.0	
R5C-282/309	3.64	56.14	35.3	18.5	31.8	
R5D-225/252	1.37	56.35	13.3		•	
R5D-294/321	1.73	56.72	16.9	12.7	29.6	
R6A-562/589	2.38	54.01	22.2	60.9	83.1	
R6C-529/556	0.86	56.14	8.3	21.3	29.7	
R8C-378/405	1.44	56.77	14.1	11.3	25.4	
R8C-476/503	1.86	57.20	18.4	4.5	22.9	
R8D-446/473	1.95	56.62	19.0	14.7	33.8	
R8D-534/561	1.96	56.80	19.2	11.6	30.8	
R9A-341/368	0.65	53.71	6.0	63.5	69.5	
R9B-385/412	0.72	54.65	6.8	47.2	54.0	
R9C-426/453	1.08	56.31	10.5	18.7	29.2	
R9D-181/208	1.39	56.67	13.6	13.0	26.6	
R10A-351/378	0.27	56.75	2.6	9.8	12.4	
R10B-351/378	0.89	56.85	8.7	9.0	17.8	
R10C-316/343	2.89	56.58	28.2	17.0	45.2	
R10D-325/352	1.61	56.56	15.7	15.2	30.9	

Table 35

PHYSICAL PROPERTIES

STRAIN RATE = (10E-5)/SEC TEMPERATURE = -20°C

Ridge ID	Salinity Test SX	Density Test SX	Brine Volume	Air Volume	Porosity (0/00)	Ice Type
	(0/00)	(1b/ft ³)	(0/00)	(0/00)	(0/00)	·
R1C-065/092	0.27	55.94	0.9	25.9	26.8	
R1D-071/098	0.61	56.61	2.0	14.6	16.6	
R3C-128/155	0.74	56.13	2.4	23.1	25.6	
R3D-129/156	0.14	49.65	0.4	135.4	135.8	
R5C-097/124	0.28	53.38	0.9	70.6	71.4	
R5D-121/148	0.53	55.91	1.7	26.7	28.5	
R6A-461/488	1.05	54.67	3.4	48.8	52.2	
R8C-165/192	0.88	54.44	2.8	52.7	55.5	
R8D-192/219	0.83	54.72	2.7	47.7	50.4	
R9A-125/152	0.04	50.96	0.1	112.5	112.6	
R9B-043/070	0.02	51.65	0.1	100.4	100.5	
R10A-195/222	0.53	56.20	1.7	21.7	23.4	
R10D-157/184	0.69	56.76	2.3	12.1	14.4	
R1C-210/236	1.10	55.40	3.6	36.1	39.7	
R1C-240/266	1.55	55.88	5.1	28.2	33.3	•
R1D-209/236	099	56.01	3.2	25.4	28.6	
R1D-315/342	2.21	56.53	7.3	17.6	24.9	
R3C-329/359	1.69	55.94	5.5	27.4	32.9	
R3C-411/438	1.36	56.55	4.5	16.4	20.9	
R3D-250/277	1.59	55.85	5.2	28.8	34.0	
R3D-318/345	1.45	56.60	4.8	15.6	20.4	
R5C-250/277	1.55	56.55	5.1	16.6	21.7	
R5C-328/355	3.88	57.00	12.9	11.1	24.0	
R5D-255/282	1.69	56.22	5.5	22.5	28.5	
R5D-325/352	1.44	56.83	4.8	11.6	16.4	
R6A-661/688	2.83	54.39	9.0	55.4	64.4	
R6C-589/616	1.63	56.52	5.4	12.0	17.4	
R8C-444/471	1.48	56.56	4.9	16.4	21.3	
R8C-508/535	2.61	56.84	8.7	12.6	21.3	
R8D-477/504	1.95	57.10	6.5	7.4	14.0	
R8D-565/592	1.45	56.81	4.8	12.0	16.8	
R9A-523/550	0.81	55.83	2.6	28.4	31.1	
R9B-449/476	1.57	55.09	5.1	42.0	47:1	
R9C-395/422	1.09	55.77	3.6	29.7	33.3	
R9D-317/344	1.11	55.35	3.6	37.1	40.6	-
R10A-320/347	1.23	56.92	4.1	9.9	14.0	
R10B-418/445	0.28	56.62	0.9	14.1	15.1	ent.

Table 36

PHYSICAL PROPERTIES

STRAIN RATE = (10E-3)/SEC TEMPERATURE = -5°C

Ridge	Salinity	Density	Brine	Air	Porosity	Ice
ID	Test SX	Test SX	Volume	Volume	(= (==)	Туре
	(0/00)	(1b/ft ³)	(0/00)	(0/00)	(0/00)	
R1A-175/201	0.70	56.81	6.9	9.4	16.2	2A
R1B-131/157	0.37	56.82	3.6	8.7	12.3	
R2A-110/135	0.20	52.43	1.8	85.0	86.9	1
R2B-135/161	0.10	55.81	1.0	25.8	26.8	
R3A-188/213	1.40	56.85	13.7	9.8	23.5	3
R3B-130/155	1.13	56.28	11.0	19.3	30.3	
R4A-283/309	1.30	53.58	12.0	66.7	78.7	_
R4B-299/325	1.30	54.89	12.3	43.9	56.2	3
R5A-135/161	0.20	56.10	1.9	20.9	22.9	
R5B-141/167	0.20	56.20	1.9	19.2	21.1	2A
R7A-005/031	0.02	52.92	0.2	76.2	76.4	
R7B-072/098	0.48	54.53	4.5	48.9	53.4	3
R8A-033/059	0.30	53.16	2.8	72.5	75.2	. 3A
R8B-011/037	0.10	52.48	0.9	84.0	84.9	
R2C-049/076	0.17	49.93	1.5	130.6	132.1	
R2D-134/161	0.37	52.64	3.4	81.5	84.8	
R4C-244/271	2.58	56.13	25.0	24.3	49.2	
R4C-309/336	0.88	55.43	8.4	33.7	42.1	
R4D-228/255	2.51	55.90	24.2	28.1	52.3	
R7C-007/034	0.10	54.27	0.9	52.9	53.8	
R6A-398/425	0.88	52.18	7.9	90.4	98.3	
R6A-504/531	0.81	53.47	7.5	67.9	75.3	
R7D-088/114	0.64	55.33	6.1	35.1	41.2	
R9C-080/107	0.46	54.67	4.3	46.1	50.4	
R9D-082/109	0.41	53.72	3.8	62.9	66.7	2.1
R1A-300/326	1.00	56.77	9.8	10.5	20.3	2A
R1B-216/241	1.20	57.14	11.8	4.4	16.3	2A
R1B-243/268	1.56	57.14	15.4	5.0	20.4	2.
R2A-285/310	0.70	56.46	6.8	15.5	22.3	2A
R2A-383/408	2.00	56.81	19.6	11.5	31.1	
R2B-351/377	2.46	56.37	23.9	19.8	43.8	
R2B-438/464	2.70	56.48	26.3	18.3	44.6	2
R3A-401/427	1.45	57.03	14.3	6.8	21.0	3
R3B-239/265	2.00	57.13	19.7	5.9	25.6	3B
R3B-331/357	2.00	56.79	19.6	11.8	31.4	۵۵
R4A-398/423	1.30	56.03	12.6		36.5	
R4B-358/384	1.96	56.00	18.9		44.4 53.0	3A
R4B-420/446	3.30	56.39	32.2	20.8	53.0 37.1	JA
R5A-473/499	0.91	55.75	8.8	28.3	51.4	
R5B-287/313	4.00	56.96	39.4	12.1 40.4	52.3	
R5B-370/396	1.26	55.09	12.0		165.3	
R7A-232/258	3.40	49.76	29.2	136.1	707.7	

91 BRC 45-85

Table 36 (cont'd)

Ridge ID	Salinity Test SX	Density Test SX	Brine Volume	Air Volume	Porosity	Ice Type
	(0/00)	(1b/ft ³)	(0/00)	(0/00)	(0/00)	
R7A-295/321	0.95	54.09	8.9	57.3	66.1	
R7B-175/201	0.13	56.03	1.3	22.0	23.3	2C
R7B-440/466	2.48	57.08	24.4	7.6	32.0	2A
R8A-305/331	1.50	56.70	14.7	12.6	27.2	
R8A-384/410	1.70	57.01	16.7	7.5	24.2	2A
R8B-300/326	0.30	56.61	2.9	12.2	15.1	3
R8B-483/509	2.10	57.0	20.7	4.9	25.6	2A
R2C-196/223	1.04	55.35	9.9	35.4	45.3	
R2C-278/305	2.33	54.66	22.0	49.5	71.5	
R2D-220/247	0.37	54.65	3.5	46.7	50.1	
R2D-334/371	1.90	54.58	17.9	50.3	68.1	
R4C-414/441	3.03	56.76	29.7	14.1	43.7	
R4C-512/539	1.03	55.85	9.9	26.6	36.6	
R4D-495/522	2.92	57.16	28.8	6.9	35.7	
R6C-476/503	0.93	54.44	8.7	51.2	59.9	
R7C-143/170	0.77	56.27	7.5	18.9	26.4	
R7C-541/568	1.15	56.75	11.3	11.2	22.5	
R7D-223/250	2.04	55.49	19.5	34.5	54.0	
R7D-312/339	1.12	54.82	10.6	44.7	55.3	•
R9A-445/482	1.05	54.01	9.8	58.8	68.6	
R9B-329/356	0.78	55.00	7.4	41.0	48.4	
R9C-332/359	0.83	54.98	7.9	41.5	49.3	
R9D-249/276	0.96	53.81	8.9	62.2	71.1	
R10A-269/296	0.81	56.39	7.9	16.9	24.8	
R10B-274/301	1.09	56.44	10.6	16.5	27.1	
R10C-445/472	1.99	56.71	19.5	13.2	32.7	
R10D-231/258	1.03	56.61	10.1	13.4	23.5	

92 BRC 45-85

Table 37

PHYSICAL PROPERTIES

STRAIN RATE = (10E-3)/SEC TEMPERATURE = -20°C

5'1	0.1:-:	Danaita	Brine	Air	Porosity	Ice
Ridge ID	Salinity Test SX	Density Test SX	Volume	Volume	(0/00)	Туре
	(0/00)	(1b/ft ³)	(0/00)	(0/00)	(0/00)	
R1C-127/154	0.31	56.08	1.0	22.8	23.8	
R1D-153/178	1.00	56.20	3.3	22.1	25.4	
R2C-129/156	0.63	54.62	2.0	50.5	52.5	
R2D-095/122	0.20	53.22	0.6	73.3	73.9	
R4D-198/225	2.31	54.72	7.4	49.2	56.5	
R6A-531/558	1.22	54.37	3.9	54.2	58.1	
R6C-134/161	0.29	52.48	0.9	86.2	87.1	
R7C-092/119	0.82	55.89	2.7	27.4	30.1	
R7D-036/063	0.19	55.16	0.6	39.5	40.1	
R9A-071/098	0.04	50.93	0.1	113.0	113.1	
R9B-076/103	0.03	50.68	0.1	117.4	117.4	
R9C-049/076	0.38	54.81	1.2	45.8	47.0	
R9D-150/177	1.22	55.68	4.0	31.4	35.4	
R10A-238/265	0.81	56.58	2.7	15.4	18.0	
R10B-084/111	0.61	56.33	2.0	19.5	21.5	
R1C-349/375	3.42	56.71	11.3	15.6	27.0	
R1C-384/410	1.94	54.65	6.2	50.0	56.2	
R1D-179/206	1.03	56.63	3.4	14.7	18.1	
R1D-285/312	2.48	57.29	8.3	4.6	12.9	
R2C-226/253	0.89	54.80	2.8	46.4	49.3	
R2C-310/337	2.63	55.15	8.5	42.0	50.5	
R2D-265/292	3.01	55.25	9.7	40.6	50.3	
R2D-406/433	1.61	55.13	5.2	41.4	46.5	
R4C-482/509	1.28	55.92	4.2	27.3	31.5	
R4C-543/570	1.87	56.16	6.1	23.7	29.8	
R4D-382/409	1.15	56.45	3.8	18.0	21.8	
R4D-414/441	0.90	55.25	2.9	38.6	41.5	
R4D-525/552	0.88	56.19	2.9	22.2	25.1	
R6C-559/586	1.70	55.92	5.6	27.7	33.3	
R7C-457/484	1.32	57.04	4.4	7.9	12.3	
R7C-572/599	1.33	56.73	4.4	13.3	17.7	
R7D-254/281	1.21	55.62	3.9	32.5	36.4	
R7D-546/573	1.09	56.72	3.6	13.2	16.8	
R9A-424/451	0.68	54.00	2.1	60.1	62.3	
R9B-417/444	0.62	54.37	2.0	53.6	55.6	
R9C-507/534	1.86	56.77	6.2	13.1	19.3	
R9D-348/375	1.14	55.39	3.7	36.4	40.1	
R10A-407/434	0.22	56.68	0.7		13.8	
R10B-449/476	0.36	56.70	1.2		14.0	
R106-449/476 R10C-506/533	3.65	57.02	12.2	10.5	22.7	
R10D-508/535	2.35	57.00	7.8	9.6	17.4	

Table 38

STATISTICAL SUMMARY OF PHYSICAL PROPERTIES OF ICE SAMPLES TESTED AT -5°C

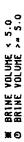

	.	47 41 17 11 07		BRC 4	3 441 88 789 789	13	313 338			63	10 54	.170	961	
	V.0	64.347 3.141 64.617 87.811 62.407		C.V	55.441	55.513	94.313 67.338		C.V.	72.563	72.954	82.1	57.9	
	Variance	0.669 3.033 62.394 905.693 842.155		Variance	0.504	46.578	997.527 950.912		Variance	0.840	78.654	828.686	748.012	
	Skewness	0.850 -1.638 0.827 1.681	-	Skewness	0.803	0.743	1.904 1.849		Skewness	0.868	-1.362 0.859	1.447	1.727	
	Kurtosis	0.593 2.659 0.573 2.846 3.843	Ų	Kurtosis	0.980	0.884	3.490	. U	Kurtosis	0.271	1.915 0.265	2,323	4.749	
Strain Kates	Sum	172.930 7539.350 1662.500 4661.000 6324.100	: (10E-5)/Sec	Sum	85.790	823.700	2243.700 3068.200	= (10E-3)/Sec	Sum	87.140	3822.080 838.800	2417.300	3255.900	
compined at	Maximum Value	4.000 57.200 39.400 139.200 165.300	Strain Rate =	Maximum Value	3.640	35,300	139.200 153.900	Strain Rate =	Maximum Value	4.000	39.400	136,100	165.300	
	Minimum Value	0.020 49.350 0.200 4.400 10.100	St	Minimum Value	0.100	1.000	4.500 10.100	St	Minimum Value	0.020	49.760	4.400	12.300	
	Standard Deviation	0.818 1.742 7.899 30.095 29.020		Standard Deviation	0.710	6.825	31,584 30,837		Standard Deviation	0.916	0/9°T 8°869	28.787	27.350	
	Mean	1.272 55.436 12.224 34.272 46.501		Mean	1.280	12.294	33.488 45.794		Mean	1.263	55.392	35,033	47.187	
	Z	136 136 136 136 136		z	67 67	. 19	67 67		z	69	69	69	69	
	Variable	Salinity Density Brine Airvol Porosity		Variable	Salinity Density	Brine	Airvol Porosity		Variable	Salinity	Density Brine	Airvol	Porosity	

Table 39

STATISTICAL SUMMARY OF PHYSICAL PROPERTIES OF ICE SAMPLES TESTED AT -20°C

Variable	Z	Mean	Standard Deviation	Minimum Value	Maximum Value	Sum	Kurtosis	Skewness	Variance	c.v.
Salinity	78	1,229	0.856	0.020	3.880	95.830	1.004	066.0	0.733	69.683
	78	55.506	1.594	49.650	57.290	4329.470	3.473	-1.842	2.541	2.872
Brine	78	4.022	2.828	0.100	12.900	313.700	1,101	1.009	7.996	70.309
	78	34,397	27.448	4.600	135.400	2683.000	3.445	1.838	753.374	79.796
Porosity	78	38.429	26.298	12.300	135.800	2997.500	3,359	1.810	691.605	68.433
				St	Strain Rate =	= (10E-5)/Sec	2			
Variable	z	Mean	Standard Deviation	Minimum Value	Maximum Value	Sum	Kurtosis	Skewness	Variance	C.V.
Salinity	37	1.220	0.808	0.020	3,880	45.150	2.158	1.059	0.653	66.220
Density	37	55.572	1.694	49.650	57,100	2056.180	4.618	-2.150	2.869	3.048
	37	4.003	2.671	0.100	12.900	148.100	2.258	1.075	7.132	66.722
	37	33.149	29.217	7.400	135,400	1226.500	4.594	2.146	853,608	88.138
Porosity	37	37.173	28.036	14.000	135.800	1375.400	4.565	2.134	786.043	75.422
				St	Strain Rate =	= (10E-3)/Sec	C			
			Standard	Minimum	Maximum					
Variable	N	Mean	Deviation	Value	Value	Sum	Kurtosis	Skewness	Variance	c.v.
Salinity	41	1.236	0.907	0.030	3.650	50.680	0.497	0.965	0.823	73.398
Density	41	55.446	1.517	50.680	57.290	2273.290	2.762	-1.566	2,302	2.736
	41	4.039	2.995	0.100	12.200	165.600	0.601	0.988	8.972	74.159
	41	35.524	26.062	4.600	117.400	1456.500	2.727	1.562	679.254	73.365
Porosity	41	39.563	24.922	12,300	117.400	1622,100	2.549	1.511	621.124	62.993

ပ MPSI PHASE1: UNIAXIAL COMPRESSION STRAIN RATE = (10E-5/SEC) TEMPERATURE = -5 DEG

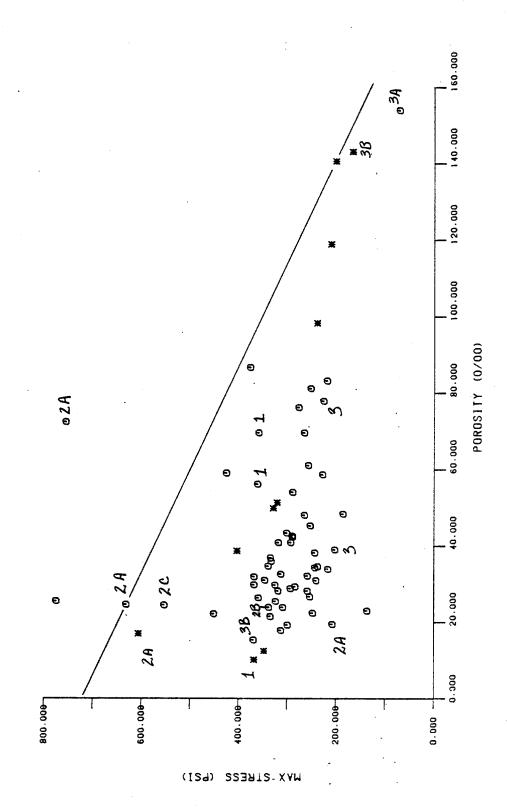


Fig. 33 - Maximum stress as a function of porosity for $\dot{\epsilon}=10^{-5}/{\rm sec}$ and T = -5°C.

ပ MPSI PHASE1: UNIAXIAL COMPRESSION STRAIN RATE = (10E-5/SEC) TEMPERATURE = -20 DEG

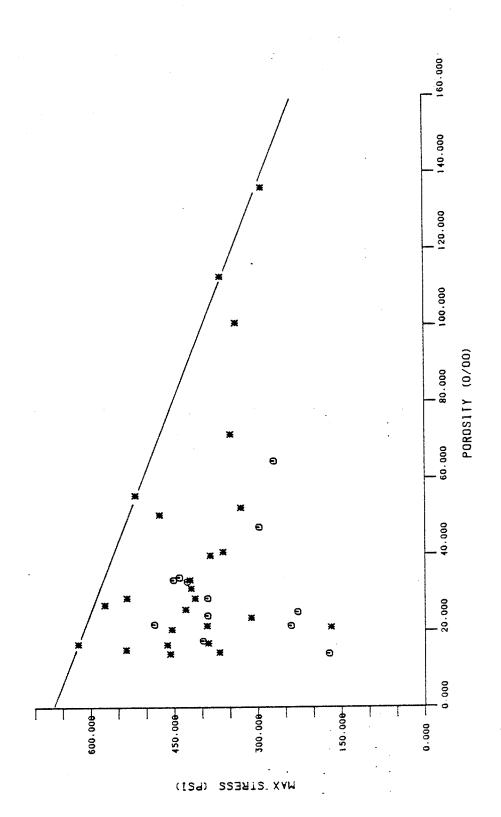
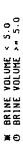



Fig. 34 - Maximum stress as a function of porosity for $\dot{\epsilon}=10^{-5}/{\rm sec}$ and T = $-20^{\circ}{\rm C}$.

 \circ STRAIN RATE = (10E-3/SEC) TEMPERATURE = -5 DEG MPSI PHASE1: UNIÄXIAL COMPRESSION

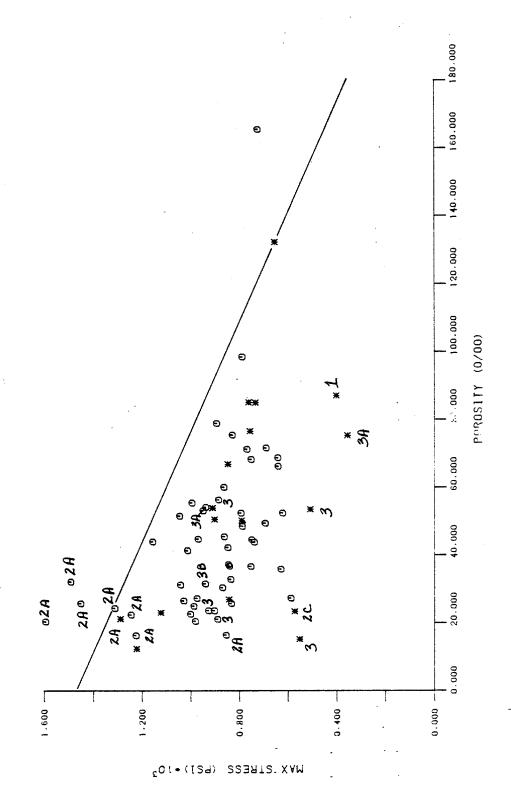


Fig. 35 - Maximum stress as a function of porosity for $\dot{\epsilon}$ = $10^{-3}/{\rm sec}$ and T = -5°C.

MPSI PHASE1: UNIAXIAL COMPRESSION STRAIN RATE= (10E-3)/SEC TEMPERATURE=-20 DEG C

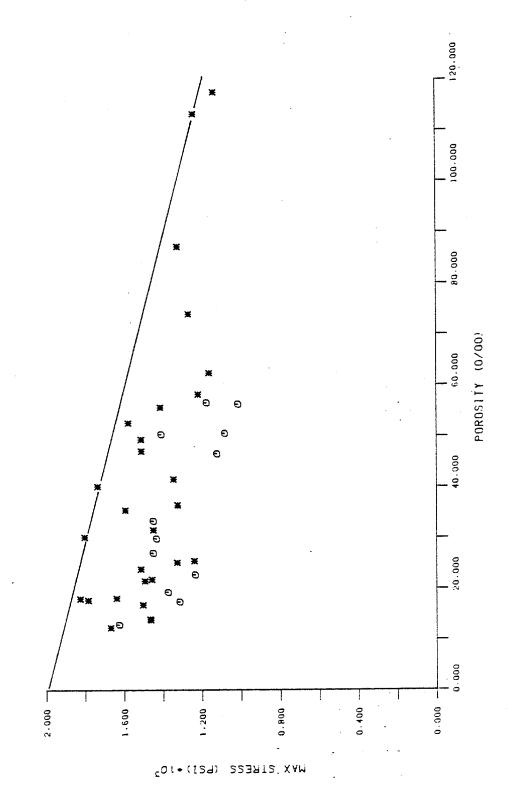


Fig. 36 - Maximum stress as a function of porosity for $\dot{\epsilon}$ = $10^{-3}/{\rm sec}$ and T = $-20^{\circ}{\rm G}$.

-- | | | | | --

ပ = -5 DEG MPSI PHASE1: UNIAXIAL COMPRESSION STRAIN RATE = (10E-5/SEC) TEMPERATURE

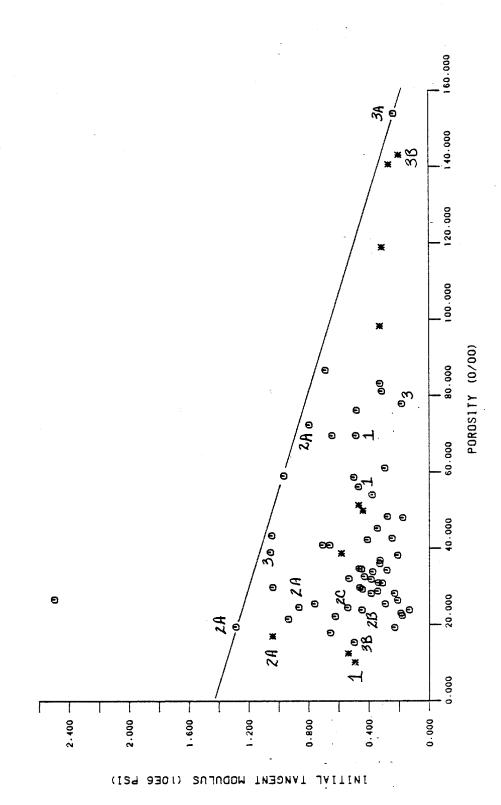


Fig. 37 - Initial tangent modulus as a function of porosity for $\dot{\epsilon} = 10^{-5}/\text{sec}$ and T = -5°C.

ပ STRAIN RATE = (10E-5/SEC) TEMPERATURE = -20 DEG MPSI PHASE1: UNIAXIAL COMPRESSION

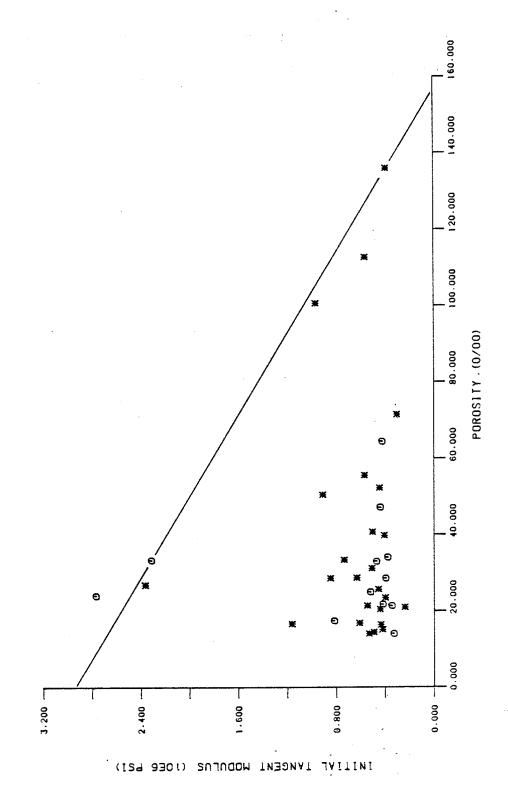


Fig. 38 - Initial tangent modulus as a function of porosity for $\dot{\epsilon}$ = $10^{-5}/{\rm sec}$ and T = $-20^{\circ}{\rm C}$.

al alla i

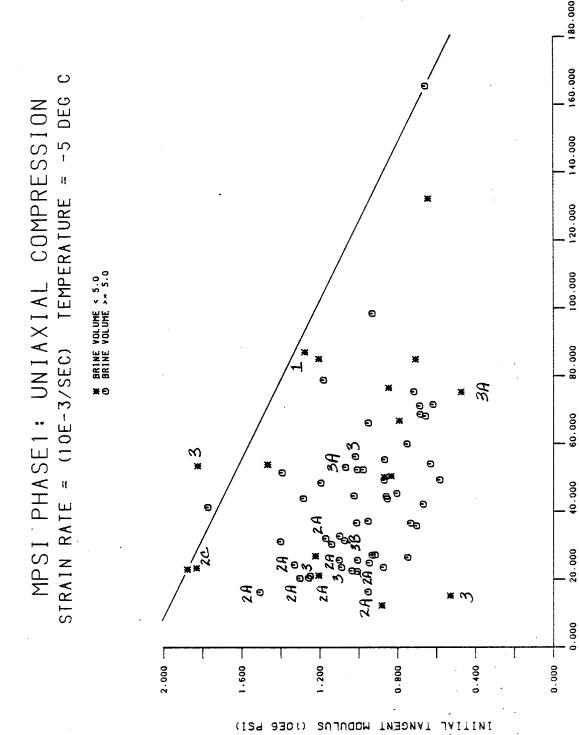


Fig. 39 - Initial tangent modulus as a function of porosity for $\dot{\epsilon}=10^{-3}/{\rm sec}$ and T = -5°C.

POROSITY (0/00)

MPSI PHASE1: UNIAXIAL COMPRESSION STRAIN RATE= (10E-3)/SEC. TEMPERATURE=-20 DEG C

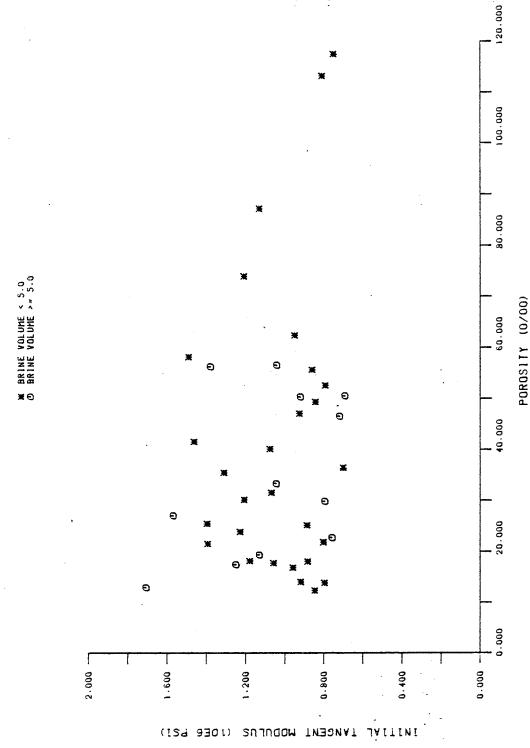


Fig. 40 - Initial tangent modulus as a function of porosity for $\dot{\epsilon}$ = $10^{-3}/{\rm sec}$ and T = $-20^{\circ}{\rm C}$.

5

and 39. In these figures, the columnar ice types (i.e., 2A, 2B, and 2C) appear to be more closely clustered than the granular or mixed ice types (i.e., 1, 3, 3A, and 3B). This is due to the generally low porosity of the columnar samples and the wide range of porosities found in the granular and mixed ice types. The columnar samples, however, do show much scatter in the maximum stress since crystal orientation plays an important role in these samples. The columnar ice types loaded in the hard fail direction (i.e., small angle between the load direction and axis of elongation) generally determine the upper bound on strengths, while the granular, mixed, and columnar loaded in the soft fail direction ice types fall into the intermediate and low strength ranges.

SUMMARY

Current methods of calculating ice loads depend on a knowledge of the mechanical properties of the ice feature being considered. Prior to the completion of MPSI-1 limited data were available describing the uniaxial compressive response of multi-year ridge ice. The results presented here summarize the mechanical properties of approximately 220 uniaxial compression tests conducted at two temperatures and two strain rates in MPSI-1. The effects of temperatures and strain rate on the mechanical properties are investigated by conducting pairwise t-tests on the mean values for the two levels of constant temperature and constant strain rate.

As expected, the t-tests show that the maximum stress and the total dissipated energy increase with increasing strain rate and decreasing temperature. The tangent modulus increases with increasing strain rate but is independent of temperature. The residual stress is independent of strain rate but increases with decreasing temperature. The strain at maximum stress increases with decreasing strain rate, but the t-tests on temperature effects are inconclusive.

An energy based failure criterion was investigated by calculating the energy dissipated to peak strength. The results from the t-tests conducted on this energy quantity show that at all test conditions except for one (i.e., C320), the mean value of the energy dissipated at peak strength is the same. This observation offers some promise for an energy based failure criterion, but further investigations need to be made to understand why the energy dissipated at C320 is different. Even if these investigations prove

fruitless, an energy based failure criterion could possibly be hypothesized on a restricted temperature strain-rate regime where the mean values of the energy dissipated to peak strength are the same.

Improved techniques for calculating ice loads will depend on more than a knowledge of a single mechanical property such as the compressive strength. Numerical modeling techniques, such as the finite element method for example, can take advantage of the entire stress-strain curve to describe the material behavior. Given the large variations observed in the mechanical properties, a means of classifying the stress-strain curves was sought to allow a comparison of different curves at a particular test condition and to investigate the effects of temperature and strain rate on the stress-strain response.

The total energy dissipated (I_T) by an ice sample seems to be a logical choice as a parameter for discussing the stress-strain response since all important mechanical properties contribute to its calculation. Material response is typically described in qualitative terms as being either brittle or ductile. However, this familiar terminology is of no use in connection with I_T unless its spatial distribution in the stress-strain plane is somehow brought into play.

A measure of the spatial distribution of I_T can be derived by decomposing I_T into a rate independent and a rate dependent part. The rate independent component of the total energy dissipated is defined as the flow energy (I_F) and the rate dependent component is defined as the crushing energy (I_C). The ratio, I_C/I_F , can now be used to provide a quantitative measure of ductility or brittleness. An ice sample with a low I_C/I_F value has a flat stress-strain curve and hence represents a ductile response. On the other hand, a high I_C/I_F value indicates a sharp stress-strain curve. Rate independent correlations between stress and energy components can be obtained by pairing the flow energy with the residual stress (σ_R) and the crushing energy with the maximum stress (σ_M). From these correlations, we find the quantity

$$\left(\frac{\sigma_{M} - \sigma_{R}}{\sigma_{R}}\right)$$

is proportional to $I_{\text{C}}/I_{\text{F}}$ and hence provides another measure of brittleness or ductility.

Pairwise t-tests were conducted for the ratio $I_{\rm C}/I_{\rm F}$ for the two levels of constant temperature and strain rate. Results show that the mean value of $I_{\rm C}/I_{\rm F}$ does not change with temperature but increases with increasing strain rate. Thus, changes in temperature cause a proportional change in the shape of the stress-strain curve. This is due to approximately proportional increases in maximum stress and residual stress with decreasing temperature. Changes in strain rate cause a distortion in the shape of the stress-strain curve as one would expect.

A comparison of the $I_{\rm C}/I_{\rm F}$ value within a particular test condition shows large variation of the mechanical response. If the entire stress-strain response is to be incorporated into an improved design methodology, then a method needs to be chosen to somehow suitably average the wide range of responses observed at a particular test condition. Two methods were investigated. The first method is simply a point by point averaging of each curve. The second method is to minimize the least square "error" from the mean of all important mechanical properties. Of the two methods investigated, the second is the easier method to apply and provides a means of choosing a real stress-strain curve which is more faithful to the observed average mechanical properties.

The effects of the physical properties on the mechanical properties were briefly investigated. Similar to other ice types, the maximum stress and tangent modulus of multi-year ridge ice decrease with increasing porosity. The possibility that the samples with low brine volumes form an upper bound on the strength vs porosity and tangent modulus vs porosity plots was also investigated but no such upper bound was found. The limited amount of crystallographic information showed that columnar samples had smaller variations in porosity than other ice types, but still had large variations in strengths due to variations in the orientations of the axis of elongation of the crystal with respect to loading direction. The larger variations in mechanical properties of the mixed and granular ice types are due primarily to large variations in porosity.

RECOMMENDATIONS FOR FUTURE WORK

Although the effects of temperature and strain rate on the uniaxial response of multi-year ridge ice have been investigated, our understanding of the material's behavior is by no means complete. In ice-structure interaction

problems, the ice will be subjected to three dimensional states of stress. Consequently, a knowledge of the effects of confining pressure on the mechanical response of multi-year ridge ice is needed. Phase II of the program (MPSI-2) includes approximately 60 conventional triaxial tests which will provide information on the pressure dependence of the mechanical response.

It is expected that a simple linear interpolation of the mechanical properties between the two MPSI-1 test temperatures (i.e., -5°C and -20°C) will be adequate to define the temperature dependence of the properties over that temperature range. However, there are situations such as summer floe impacts and the local contact between a ridge keel and conical structure where the temperature of the ice would be warmer than -5°C. At warm temperatures, the mechanical behavior of ice becomes highly nonlinear, and extrapolation of the MPSI-1 temperature data would probably over-predict ice strengths near the melting point. Clearly, warm temperature strength data are needed. A test program independent of the MPSI program has been initiated to obtain these data.

With the completion of the program to obtain warm temperature strength data, we will have a comprehensive view of the small scale mechanical response of multi-year ridge ice. Emphasis should then be shifted from the laboratory to the field. In particular, investigations need to be made on the internal structure of multi-year ridges. The small scale data show large variations in the mechanical properties which are attributed to the wide variety of ice types found in multi-year ridges. Very little is known about the spatial distribution of these ice types within a ridge. Structural trends observed in a ridge could play an important role in the calculation of ice loads. It was observed, for example, that the keel region of the continuous core sampled in MPSI-1 contained predominantly vertically oriented columnar ice. If this is in general true for all keels, then the design methodology and geometry could be modified to take advantage of this feature.

REFERENCES

- Cox, G. F. N., Richter-Menge, J. A., Weeks, W. F., Mellor, M., and Bosworth, H. W. (1983), The Mechanical Properties of Multi-Year Sea Ice, Phase I: Test Results, Report 84-9, Cold Regions Res. and Eng. Lab., U.S. Army, Hanover, New Hampshire.
- 2. Cox, G. F. N., Richter, J. A., Weeks, W. F., and Mellor, M. (1984), A Summary of the Strength and Modulus of Ice Samples from Multi-Year Pressure Ridges, presented at the Third Int. Offshore Mech. and Arctic Symposium, Am. Soc. Mech. Eng., New Orleans, February.
- 3. Richter, J. A. and Cox, G. F. N. (1984), A Preliminary Examination of the Effect of Structure on the Compressive Strength of Ice Samples from Multi-Year Pressure Ridges, presented at the Third Int. Offshore Mech. and Arctic Symposium, Am. Soc. Mech. Eng., New Orleans, February.
- 4. Weeks, W. F. (1984), The Variation of Ice Strength Within and Between Multi-Year Pressure Ridges in the Beaufort Sea, presented at the Third Int. Offshore Mech. and Arctic Symposium, Am. Soc. Mech. Eng., New Orleans, February.
- 5. Mellor, M., Cox, G. F. N., and Bosworth, H. W. (1984), The Mechanical Properties of Multi-Year Sea Ice, Phase I: Techniques for Measuring the Mechanical Properties of Ice, Report 84-8, Cold Regions Res. and Eng. Lab., U.S. Army, Hanover, New Hampshire.
- 6. Cox, G. F. N. and Weeks, W. F. (1982), Equations for Determining the Gas and Brine Volumes in Sea Ice Samples, Report 82-30, Cold Regions Res. and Eng. Lab., U.S. Army, Hanover, New Hampshire.
- 7. Dorris, J. F. (1985), Classification of Failure Modes for Unconfined Compression Tests of Multi-Year Ridge Ice, Technical Information Record BRC-1285, Shell Development Bellaire Research Center, Houston.
- 8. Mellor, M. (1983), Mechanical Behavior of Sea Ice, Mon. 83-1, Cold Regions Res. and Eng. Lab., U.S. Army, Hanover, New Hampshire.
- 9. Weeks, W. F. (1982), The Growth, Structure, and Properties of Sea Ice, Mon. 82-1, Cold Regions Res. and Eng. Lab., U.S. Army, Hanover, New Hampshire.
- 10. Cherepanov, N. V. (1974), Classification of Ice of Natural Water Bodies, Proc. Int. Conf. Eng. Ocean Environ., Ocean 74, Inst. Electr. Electron. Eng., Halifax, Nova Scotia.
- 11. Michel, B. (1978), Ice Mechanics, Les Presses de l'Universite' Laval, Quebec, Canada.
- 12. IMSL Reference Manual, Edition 7 (1979), International Mathematical and Statistical Libraries, Inc., Houston.

ē.

7

TECHNICAL PROGRESS REPORT - BRC 45-85

DISTRIBUTION

Shell Development Company

- 6 Information Services, WRC, Houston (w/2 sets of Appen.)
 1 Patents and Licensing Division, Houston (w/1 set of Appen.)

Shell Oil Company

- FIRE BALL THE TRANSPORT OF THE PROPERTY OF THE
- 1 Vice President, Exploration, Head Office, Houston (w/l set of Appen.)
 1 General Manager, Drilling & Producing Operations, Head Office, Houston
 (w/l set of Appen.)
- General Manager, Engineering, Head Office, Houston (w/l set of Appen.)

ALLENDON DE LA COMPANION DE LA

P. L. E. A. S. Margon de la cape de la proposición de la Millia de capación

Appendices A, B and C of this TPR are bound separately and are of limited interest. The number of sets of Appendices being distributed with TPR are indicated for each location. 3/85

THE UNIAXIAL MECHANICAL RESPONSE OF MULTI-RIDGE ICE

VOLUME III APPENDIX B - CUBIC SPLINES FORCE-TIME HISTORIES

BY

J. F. DORRIS AND J. S. AUSTIN

TECHNICAL PROGRESS REPORT

BRC 45-85 OCTOBER 1985

Project No. 327-27802.34

Mechanical Properties of Sea Ice

SHARED - Under the Research Agreement between SIRM, and Shell Oil Company dated January 1, 1960, as amended.

Reviewed by:

E.G. Ward

E.N. Earle

Participant:

C.A. Gutierrez

Released by:

J.H. Lybarger

Reference:

Based on work through December 1983.

B-1 BRC 45-85

Appendix B

CUBIC SPLINES FOR FORCE-TIME HISTORIES

						Page
Strain.	Rate	=	(10E-5)/sec,	Temperature	= -5°C	B-3
Strain	Rate	=	(10E-5)/sec,	Temperature	= -20°C	B-29
Strain	Rate	=	(10E-3)/sec,	Temperature	5°C	B-45
Strain	Rate	=	(10E-3)/sec,	Temperature	= -20°C	B-71

			,
			9
			* .
•			
			_
			Ţ.
			_

Appendix B

SPLINE COEFFICIENTS FOR FORCE-TIME HISTORIES

THE UNIAXIAL MECHANICAL RESPONSE OF MULTI-RIDGE ICE

VOLUME II APPENDIX A - PROCEDURE FOR SMOOTHING MPSI STRESS STRAIN CURVES

BY

J. F. DORRIS AND J. S. AUSTIN

TECHNICAL PROGRESS REPORT

BRC 45-85 **OCTOBER 1985**

Project No. 327-27802.34 Mechanical Properties of Sea Ice

Under the Research Agreement between SIRM, SHARED and Shell Oil Company dated January 1, 1960, as amended.

Reviewed by:

E.G. Ward

E.N. Earle

Participant:

Released by:

C.A. Gutierrez J.H. Lybarger

Reference:

Based on work through December 1983.

i BRC 45-85

LIST OF ILLUSTRATIONS

Figure Number		Page
A-1	Typical spline fit to experimental data	A-3
A-2	Enlarged view near the origin of the strain measured by the extensometer and the two DCDTs for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test	A-5
A-3	Enlarged view near the origin of the strain measured by the extensometer and the two DCDTs for a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test	A-6
A-4	Measured strain and force histories for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test	A-7
A-5	Measured strain and force histories for a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test	A-8
A-6	Measured force histories for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ and $\dot{\epsilon} = 10^{-3}/\text{sec}$ test on the same coordinate axes	A-9
A-7	Enlarged view near the origin of the force history for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test	A-11
A-8	Enlarged view near the origin of the strain history for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test	A-12
A-9	Enlarged view near the origin of the force history for a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test	A-13
A-10	Enlarged view near the origin of the strain history for a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test	A-14
A-11	Primary smoothing and tangent at the inflection point for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test	A-16
A-12	Primary smoothing and tangent at the inflection point for a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test	A-17
A-13	Schematic diagram of the location of the additional spline with respect to the secondary smoothing	A-19
A-14	Smooth curve obtained for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test using one additional knot to supplement the secondary smoothing	A-21
A-15	Enlarged view of Figure A-14 near the origin	A-22
A-16	Schematic diagram of the location of the two additional knots	A-22

Figure Number		Page
A-17	Smooth curve obtained for a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test using two additional knots to supplement the secondary smoothing	A-25
A-18	Enlarged view of Figure A-17 near the origin	A-26
A-19	Measured force history of a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test with a premature failure	A-27
A-20	Measured strain history of a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test with a premature failure	A-28
A-21	Schematic diagram of the procedure to smooth tests with a premature failure	A-30
A-22	Initial smoothing and the construction of the tangent to the inflection point for a test with a premature failure	A-31
A-23	Final smoothing for a test with a premature failure	A-32
A-24	Final stress-strain curve for a 10 ⁻⁵ /sec test	A-37
A-25	Final stress-strain curve for a $10^{-3}/\text{sec}$ test	A-38
A-26	Final stress-strain curve for a test with a premature failure	A-39
	LIST OF TABLES	
Table Number		Page
A-1	Spline parameters for R5A-165/191	A-34
A-2	Spline parameters for R4B-299/325	A-35
A-3	Spline parameters for R8B-483/509	A-36

Appendix A

PROCEDURE FOR SMOOTHING MPSI STRESS STRAIN CURVES

Appendix A

PROCEDURE FOR SMOOTHING MPSI STRESS-STRAIN CURVES

INTRODUCTION

In Phase I of the Mechanical Properties of Sea Ice (MPSI) program, approximately 200 uniaxial constant strain rate compression tests were conducted. These tests were recorded on an FM magnetic tape recorder. It was necessary to digitize the analog magnetic tapes in order to employ a computer analysis of the data. After digitization, the data were processed further by fitting cubic splines to the digital data from each test. This step serves three purposes:

- 1. Cubic splines provide a more efficient means of storing the data,
- 2. Any noise in the data is filtered out, and
- 3. Application of constitutive models to ice requires an analytical description of the stress-strain curve.

The following account describes the procedures employed in obtaining the smooth stress-strain curves from the digitized data.

CUBIC SPLINES

The cubic splines for each test are found by employing the $IMSL^{12}$ subroutine ICSVKU. This subroutine requires that the range of the independent variable, t, be divided into (k-1) intervals by selecting k knots, t_i , $i=1,2,\ldots,k$. The subroutine then calculates a cubic spline S_i for each interval. Taken together, the splines form a (k-1) branched composite function, F(t), which is continuous and has continuous first and second derivatives at each intermediate knot. The cubic splines are chosen so that the composite function minimizes the least squares error of the approximation to the digitized data.

Each spline, S_i , is referred to a local coordinate system, $(\xi_i, S_i(\xi_i))$ whose origin is located at the point $(t_i, 0)$. To evaluate the composite function at the point $t = \hat{t}$, one must first find the knot interval, $I_i : t_i \leq \hat{t} \leq t_{i+1}$, in which the point lies. Once this interval is found, the function is evaluated by the equation,

$$s_{i}(\hat{\xi}_{i}) = ((c_{i3}\hat{\xi}_{i} + c_{i2}) \hat{\xi} + c_{i1}) \hat{\xi}_{i} + y_{i},$$
 (1)

where

$$\hat{\xi}_{i} = \hat{t} - t_{i}, 0 \le \hat{\xi}_{i} \le t_{i+1} - t_{i}$$

Here C_{i3} , C_{i2} , and C_{i1} are the cubic, quadratic, and linear coefficients, respectively, of the local independent variable, ξ_i . The quantity, y_i , denotes the initial value of the spline in the local coordinate system. These quantities are returned by the subroutine and represent the best fit of the data on the interval, $t_i \leq t \leq t_{i+1}$. The $(k-1) \times 3$ matrix C_{ij} , the (k-1) dimensional vector y_i , and the k dimensional vector t_i will completely specify the composite function, F(t). These quantities are tabulated in data files for each test. A schematic diagram of the composite function and cubic splines is found in Figure A-1.

The successful use of splines to approximate a data set is dependent on the choice of knots. The subroutine ICSVKU is a variable knot routine which optimizes the knot locations after an initial guess is made for the knots. The IMSL library package also contains several subroutines which evaluate the splines, take first and second derivatives, and integrate. However, it is not necessary to have access to the IMSL library package to perform these calculations, since it is an easy task to program Equation (1) if given the quantities C_{ij} , y_i , and t_i .

TEST MEASUREMENTS

In Phase I, the uniaxial compression tests were conducted at strain rates, $\dot{\epsilon}$, of $10^{-5}/\text{sec}$ and $10^{-3}/\text{sec}$, and temperatures, T, of -5°C and -20°C . Each test sample was loaded at a constant strain rate until either the sample failed or the strain reached 5%. The shape of the stress-strain curve is highly dependent on strain rate and much less dependent on temperature. Consequently, for the purpose of curve fitting, we will only consider the two strain rates to be the test conditions. All observations or conclusions regarding tests at a given strain rate will apply to both temperatures. In the following, two tests are chosen to be typical examples of the results from each of the two strain rates. Test number R5A-165/191 will represent the $10^{-5}/\text{sec}$ tests and test number R4B-299/325 will represent the $10^{-3}/\text{sec}$ tests.

In each test, a load cell recorded the axial force as a function of time. The axial displacement was also recorded as a function of time with an extensometer and two DCDTs. The extensometer recorded displacements over the

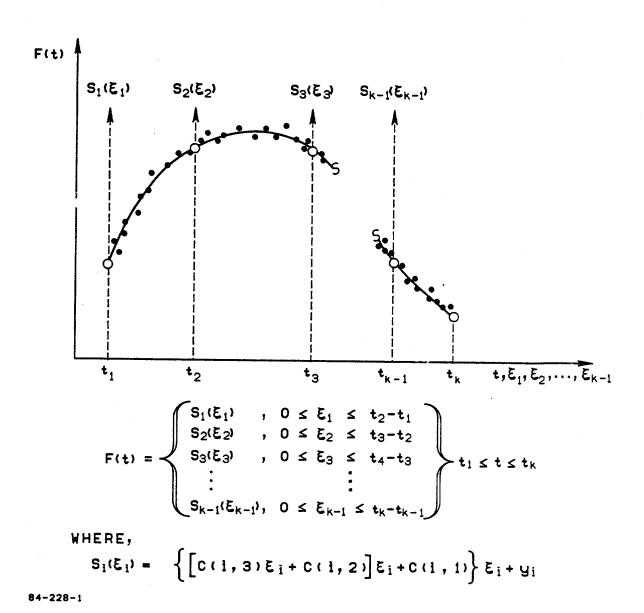


Fig. A-l - Typical spline fit to experimental data.

full sample length (10 in.) and was used as the feedback control on the closed loop testing machine. The two DCDTs were mounted on the ice sample 180° apart with a 5 1/2" gage length. The calibrated output from the load cell is converted to stress by dividing by the original cross-sectional area of the sample, and the calibrated output from the axial displacement transducers is converted to strain by dividing by the appropriate gage length.

In Figures A-2 and A-3, the strain recorded from each axial displacement transducer is recorded as a function of time for each strain rate. At the beginning of each test, there is close agreement between all three transducers, but there is a point at which the output of the two DCDTs begins to diverge from the extensometer. This point is usually just prior to the peak force. Ideally for a constant strain rate test, the DCDTs should produce linear measurements similar to the extensometer throughout the test. However, at times corresponding to the peak force, the ice begins to undergo nonhomogeneous deformations characterized by highly localized bulging and fracturing. Since the DCDTs are attached directly to the ice, their nonlinear measurements are a direct result of the nonhomogeneous deformations. For this reason the measurements from the DCDTs should not be considered dependable beyond the initial portion of the test. The extensometer, on the other hand, measures the relative displacement of the endcaps, and its measurements should be interpreted as the average displacement over the sample length. Since we are interested in constant strain rate up to 5% strain, only the extensometer will be used to measure axial displacement.

The complete time histories for the load and strain measured from the extensometer as shown in Figures A-4 and A-5 for each strain rate. The force histories for each strain rate are plotted on the same coordinate axes in Figure A-6 to illustrate the change in shape with strain rate. As will be seen later, the differences in shape will require slightly different fitting techniques for each strain rate.

FITTING PROCEDURES FOR FORCE-TIME CURVES

When conducting an experiment, the experimentalist attempts to create an idealized situation to obtain measurements for use in a theoretical model or hypothesis. But, because of experimental limitations, it is usually impossible to create these ideal situations, causing some discrepancies between experiment and theory which should be accounted for in the data analysis.

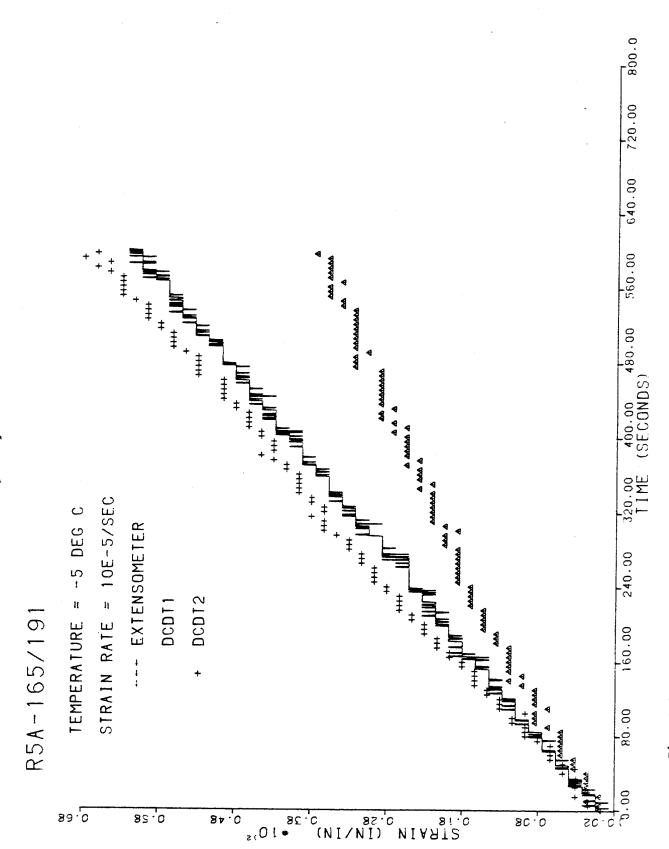


Fig. A-2 – Enlarged view near the origin of the strain measured by the extensometer and the two DCDTs for a $\hat{\epsilon}=10^{-5}/{\rm sec}$ test.

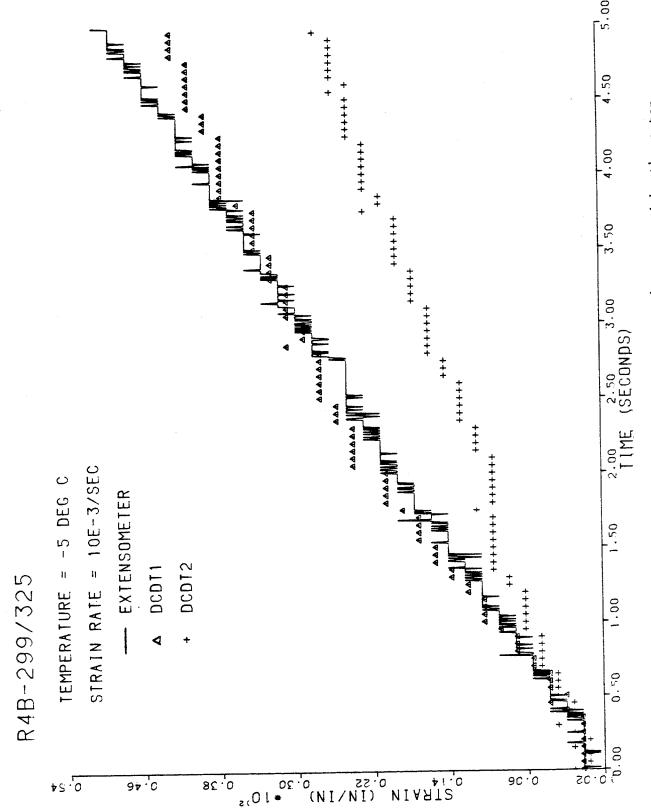


Fig. A-3 – Enlarged view near the origin of the strain measured by the extensometer and the two DCDTs for a $\hat{\epsilon}=10^{-3}/\text{sec}$ test.

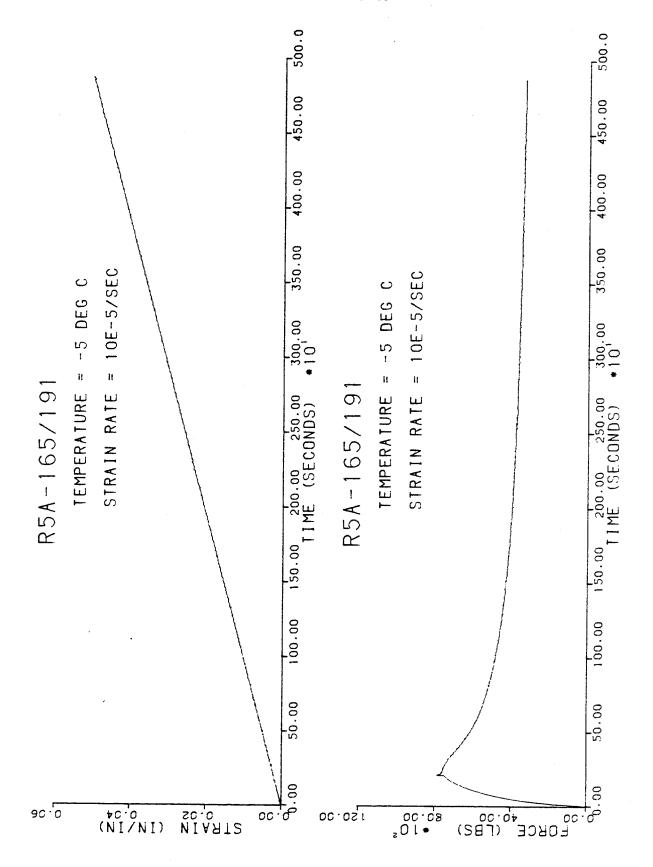
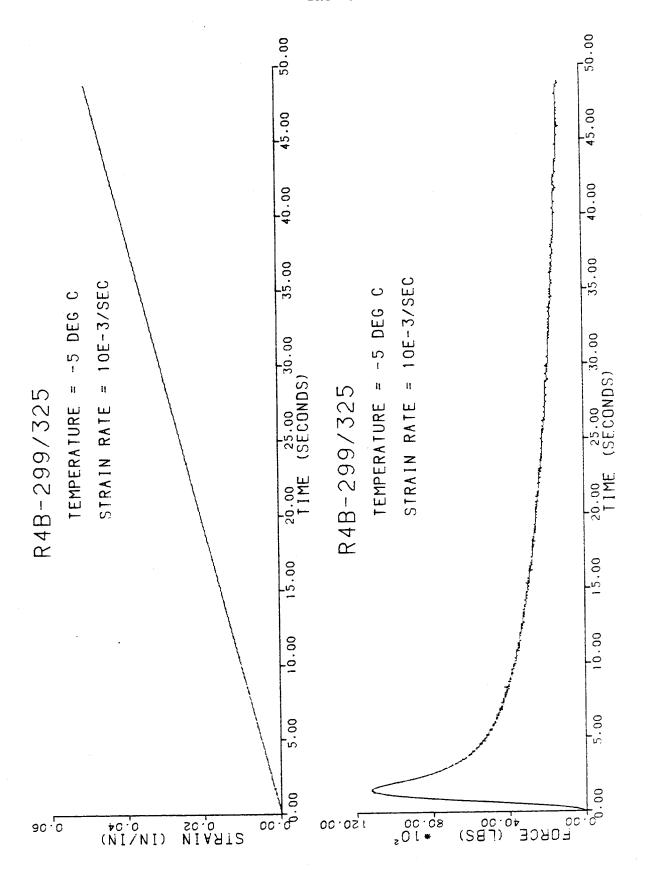
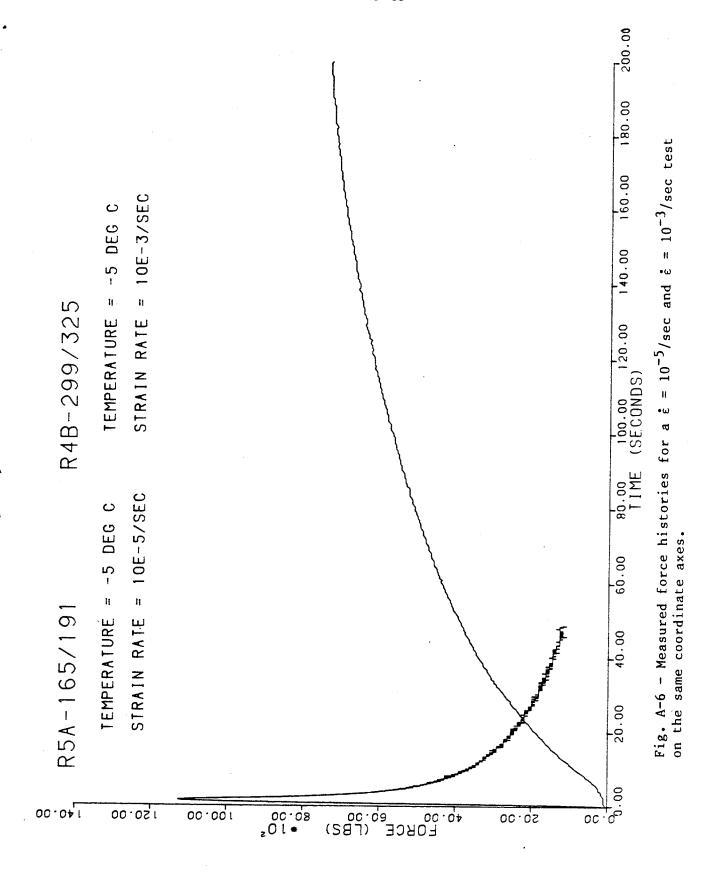




Fig. A-4 - Measured strain and force histories for a $\dot{\epsilon} = 10^{-5}/\text{sec}$ test.

 $= 10^{-3}/\text{sec test.}$ Fig. A-5 - Measured strain and force histories for a $\dot{\epsilon}$

To illustrate some of the discrepancies arising from the uniaxial compression tests, consider Figures A-7 to A-10 which show enlarged views of the force and strain measurements near the beginning of each test. In Figures A-7 and A-9, the force increases from zero at time, t = 0, as expected, whereas in Figures A-8 and A-10, the axial displacement does not increase from zero until approximately t = 8 sec for the $10^{-5}/\text{sec}$ tests and t = 0.3 sec for the 10^{-3} /sec tests. This apparent discrepancy in the starting time is due to the finite amount of time required for the machine to overcome the initial condition of being at rest and then reach a steady state condition of constant strain rate. The resolution of the transducers and digitizing hardware also prohibits the measurement of very small strains near t = 0. Figures A-7 and A-9 also show the initial curvature (i.e., the second derivative) of the force-time curves to be positive. This initial positive curvature is partly due to the initially nonconstant strain rate and is partly due to the elastic closure of voids and microcracks which acts to stiffen the material response. Because of the positive initial curvature, the maximum slope would occur sometime after the beginning of the test. This contradicts a fundamental assumption of constitutive theories (e.g., elasto-plasticity, viscoelasticity, etc.) commonly used to describe materials having nonlinear stress-strain curves. These theories assume the maximum slope occurs at the beginning of the test and represents the initial elastic response of the material.

With the previous problems in mind, procedures were developed to produce force-time curves which conform to the following guidelines:

- 1. Obtain accurate measurement of the mechanical properties. The properties of major interest from the stress-strain curves are the peak stress, the maximum slope, and the residual stress.
- 2. Develop a systematic method to resolve the apparent discrepancy in the start time of the force and axial displacement measurements.
- 3. Generate stress-strain curves whose initial slope is the maximum slope. In doing this, we are in effect editing out the initial positive curvature in the data. Although it is recognized that this feature is an intrinsic material property in geological materials such as rock, we do not feel that the exclusion of this feature will have an effect on ice loads calculated from these edited stress-strain curves.

The subroutine ICSVKU finds cubic splines which minimize the least squares error of the entire curve. This, however, does not guarantee a good

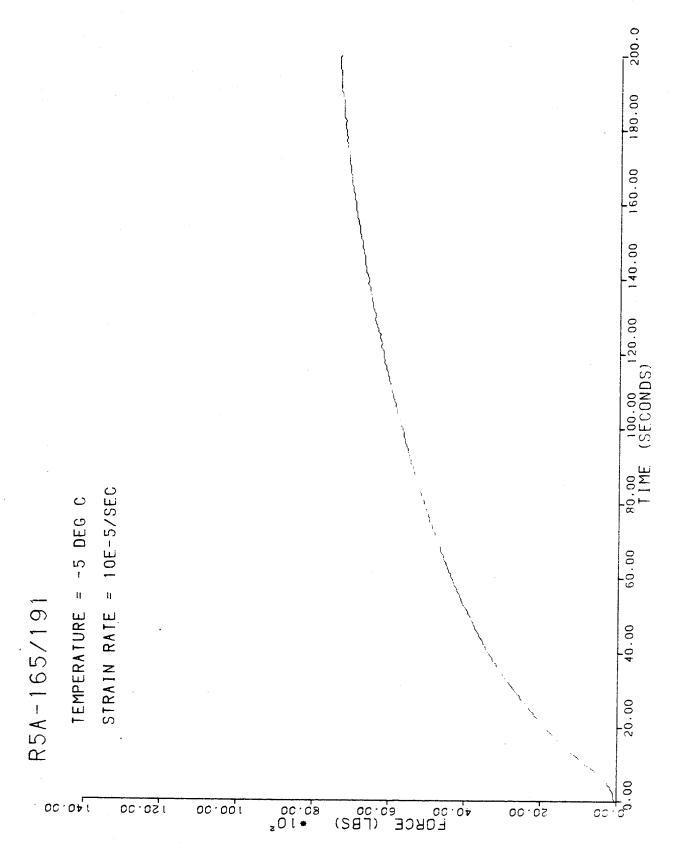
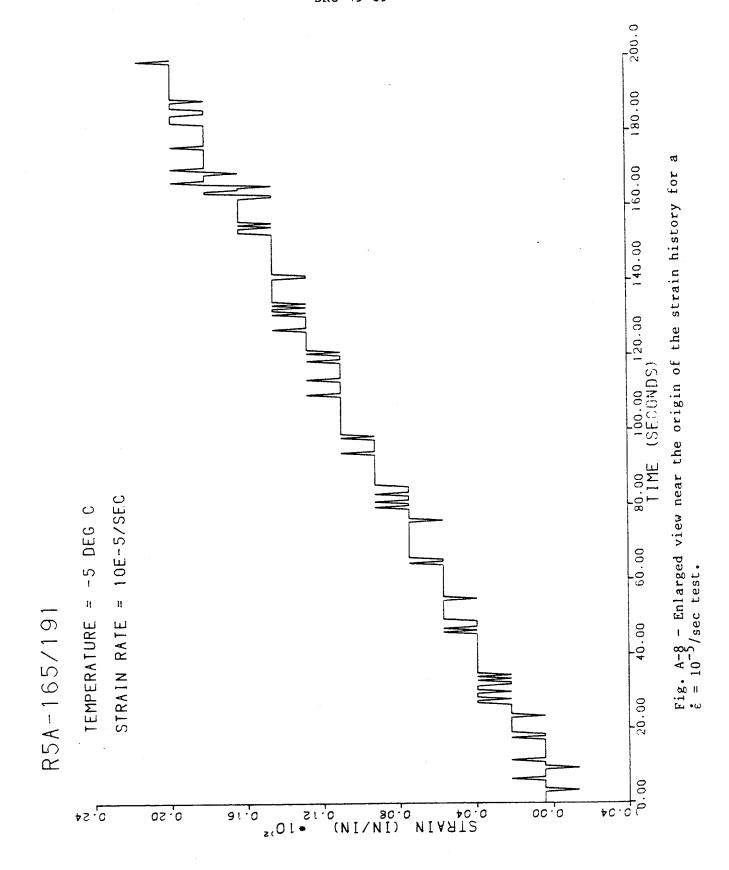
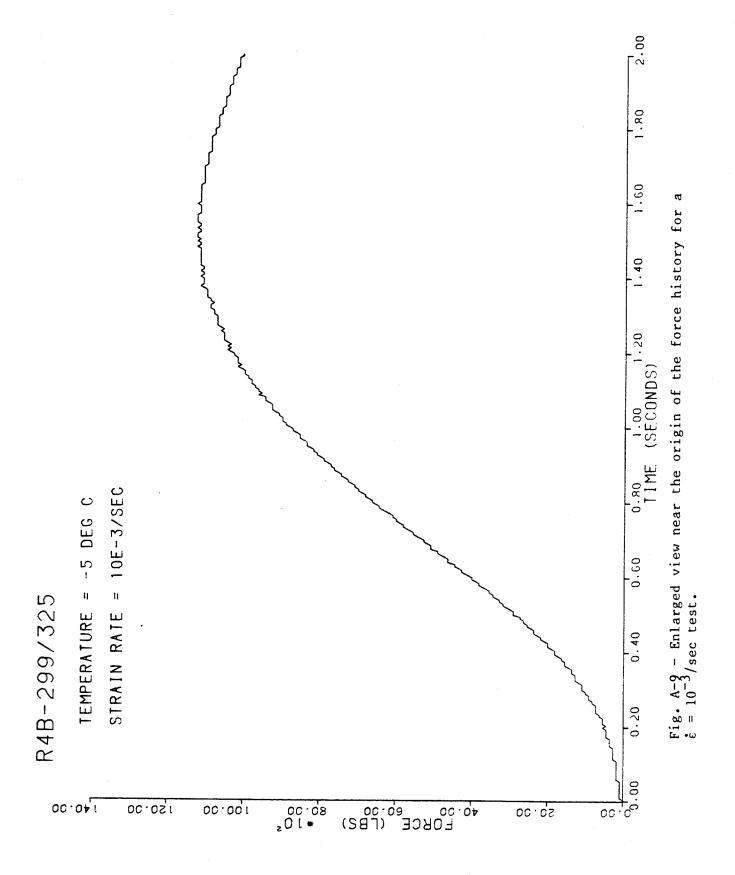
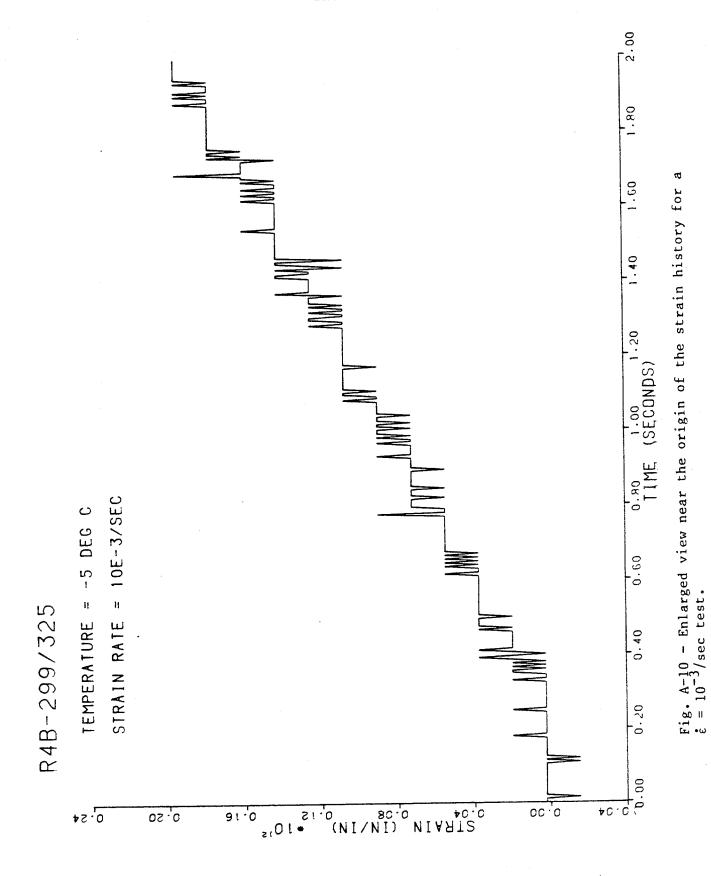





Fig. A-7 – Enlarged view near the origin of the force history for a $\dot{\epsilon}=10^{-5}/\sec$ test.

local fit. When applying the subroutine to the entire data set of digitized points, good fits are consistently obtained for the points beyond the peak force and poor fits are found for the points up to and around the peak force. The poor fit at the beginning is a result of the subroutine's preference to fit the smooth portion of the curve beyond the peak force rather than the initial portion where the slope changes rapidly from zero at t = 0, reaches a maximum, and goes back to zero at the peak. It is by far easier to minimize the global least squares error by finding a good fit in the smooth post peak area where a majority of the points are located rather than fit well the few points near the origin. Attempts at improving the initial fit by adding more knots near the origin or weighing the initial part with more points failed to achieve consistent results.

To insure an accurate curve fit for the beginning of the force-time data set and hence an accurate measurement of the maximum slope, a primary smoothing is made for the initial part of the data only. This is done by creating a subset of points from the entire data set for each strain rate. For the $10^{-5}/\text{sec}$ strain rate, all points for the first 40 sec comprise the subset for primary smoothing. The subset for the $10^{-3}/\text{sec}$ tests consists of all points to the peak minus the first and last few points to eliminate the portions of the subset which would have zero slopes. The resulting subsets for each strain rate then form a smooth monotonically increasing data function which can be accurately fitted with splines. The subset for each strain rate is then divided into four intervals by selecting five equally spaced knots. Cubic splines are then found for each interval, and the maximum slope is found by calculating the slope at the inflection point. Figures A-11 and A-12 show the data points in each subset, the fitted curve, and the tangent at the point of inflection for the primary smoothing.

A secondary smoothing is then made by creating another data subset for each strain rate consisting of all points to the right of the inflection point. The first few points of the subset are then deleted to insure that the initial slope of the secondary smoothing is less than the previously calculated maximum slope. The $10^{-5}/\text{sec}$ data subset is divided into ten intervals, and the $10^{-3}/\text{sec}$ data set is divided into nine intervals. Cubic splines are then found for each interval. These splines are then considered final for that portion of the force-time curve.

Fig. A-11 - Primary smoothing and tangent at the inflection point for a $\dot{\epsilon}$ = 10⁻⁵/sec test.

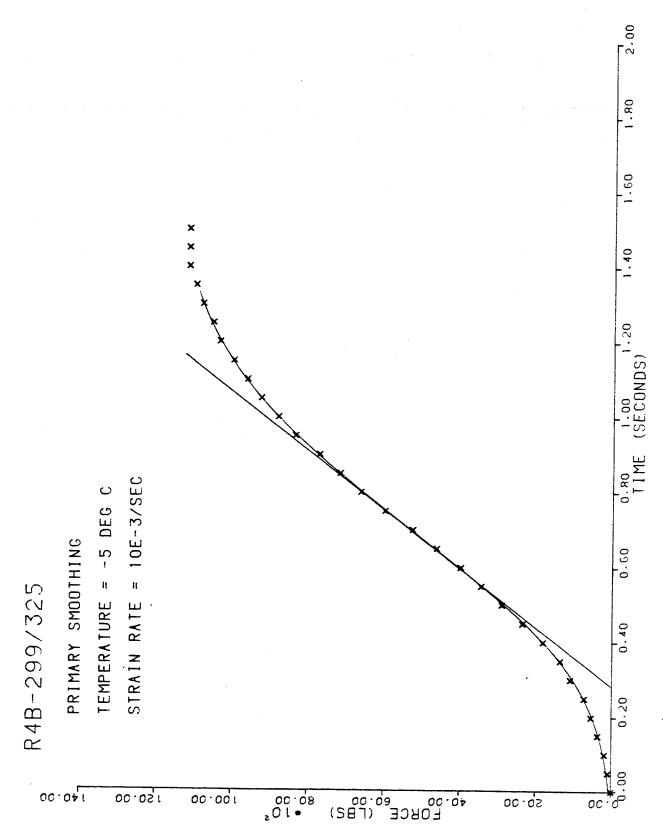


Fig. A-12 - Primary smoothing and tangent at the inflection point for a $\hat{\epsilon}=10^{-3}/\sec$ test.

The next task is to construct an additional spline which connects the initial point of the secondary smoothing with the time axis. This spline is constructed without regard to the data points prior to the initial point of the secondary smoothing, since those points represent the portion of the curve with positive curvature.

The first step in this procedure is to shift the knot index, i, of the quantities returned by the subroutine for the secondary smoothing. The shift is made by increasing the index by one, so that t_i becomes t_2 , y_1 becomes y_2 , C_{1j} , j=1, 3, becomes C_{2j} , etc. The secondary smoothing is now described by (k-1) splines $S_i(\xi_i)$, i=2, k. A schematic diagram illustrating the additional spline along with the secondary smoothing is shown in Figure A-13.

To construct the additional spline, $S_1(\xi_1)$, a local coordinate system is set up at the point $(t_2-T_1,\,0)$. The independent variable for this coordinate system is ξ_1 and covers the range $0 \le \xi_1 \le T_1$. The spline, $S_1(\xi_1)$, is found by constructing a cubic polynomial which satisfies the following conditions:

1.
$$s_1(0) = 0$$

2. $s'_1(0) = F'_{max}$
3. $s'_1(0) = F''_0$
4. $s_1(T_1) = s_2(0) = y_2$
5. $s'_1(T_1) = s'_2(0) = C_{21}$
6. $s'_1(T_1) = s'_2(0) = 2C_{22}$

Here F'_{max} denotes the maximum slope calculated from the primary smoothing. Although the cubic polynomial which we are trying to construct is described by four unknown constants, the six conditions shown above can be satisfied since the quantities T_1 and F''_0 are also considered as unknowns.

Successive elimination of the unknowns in the above conditions yields a quadratic equation in F_0' with the coefficients being algebraic combinations of the known quantities F_{max}' , y_2 , C_{21} , and C_{22} . Solution of this quadratic equation will yield two solutions for F_0' . If one of these solutions is negative, then that solution is chosen to be the correct

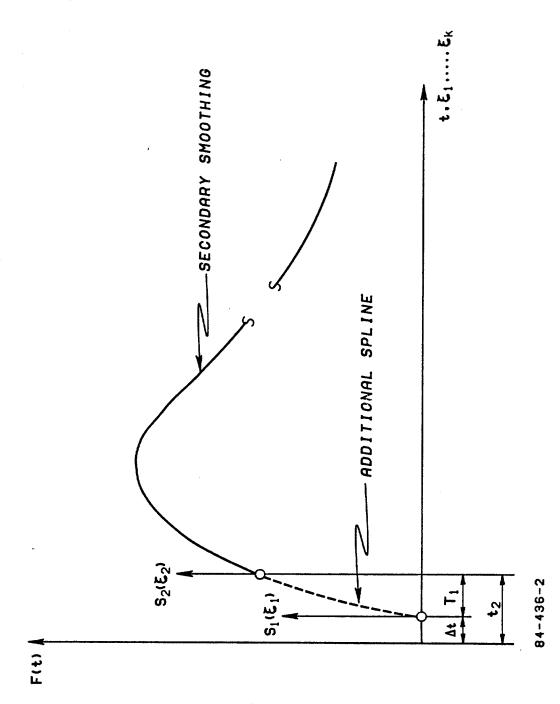


Fig. A-13 - Schematic diagram of the location of the additional spline with respect to the secondary smoothing.

solution. With $F_0'' < 0$, we are guaranteed that the curvature of $S_1(\xi_1)$ will be negative, since we have required that the initial slope of the secondary smoothing be less than F_{max}' . Once the additional spline $S_1(\xi_1)$ is determined, the smoothing procedure is complete. Figure A-14 illustrates the smooth curve obtained for the $10^{-5}/\text{sec}$ test using this procedure. Figure A-15 is an enlarged view of this curve near the origin to illustrate the initial negative curvature of the smooth curve and the continuity at the initial point of the secondary smoothing.

In the event that the quadratic equation for F_0'' yields two positive solutions or two imaginary solutions, the conditions in Equation (2) can be relaxed by adding two splines to the secondary smoothing instead of one. In this case the knot indices, i, for t_i , y_i , and C_{ij} , j=1, 3, are shifted by two. Figure A-16 illustrates the location of the additional splines after the index shift has been made.

To construct the spline adjacent to the initial point of the secondary smoothing, a local coordinate system is set up at the point $(t_3-T_2,0)$. The independent variable for this coordinate system is ξ_2 and covers the range $0 \le \xi_2 \le T_2$. The spline, $S_2(\xi_2)$ is found by constructing a cubic polynomial which satisfies the following conditions:

1.
$$s_{2}'(0) = F_{max}',$$

2. $s_{2}''(0) = 0,$
3. $s_{2}(T_{2}) = s_{3}(0) = y_{3},$
4. $s_{2}'(T_{2}) = s_{3}'(0) = c_{31},$
5. $s_{2}''(T_{2}) = s_{3}''(0) = 2c_{32}.$

The above five conditions are sufficient to solve for the four unknown constants of the cubic polynomial and the unknown time quantity, T_2 . Since the initial point of the secondary smoothing is a few points to the right of the inflection point of the primary smoothing, the quantity, $(t_3 - T_2)$ roughly corresponds to the time at which the inflection point occurs in the experimental data.

In a similar manner, the spline to the left of $S_2(\xi_2)$ is found by setting up a local coordinate system at the point, $(t_3 - T_2 - T_1, 0)$ for the independent variable, ξ_1 , which covers the range, $0 \le \xi_1 \le T_1$. The spline

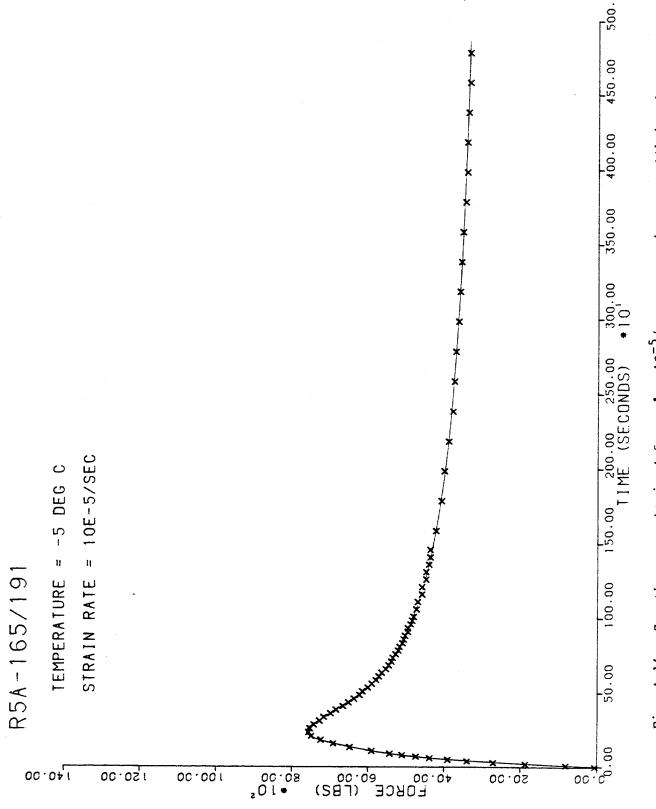


Fig. A-14 - Smooth curve obtained for a $\hat{\epsilon}=10^{-5}/\mathrm{sec}$ test using one additional knot to supplement the secondary smoothing.

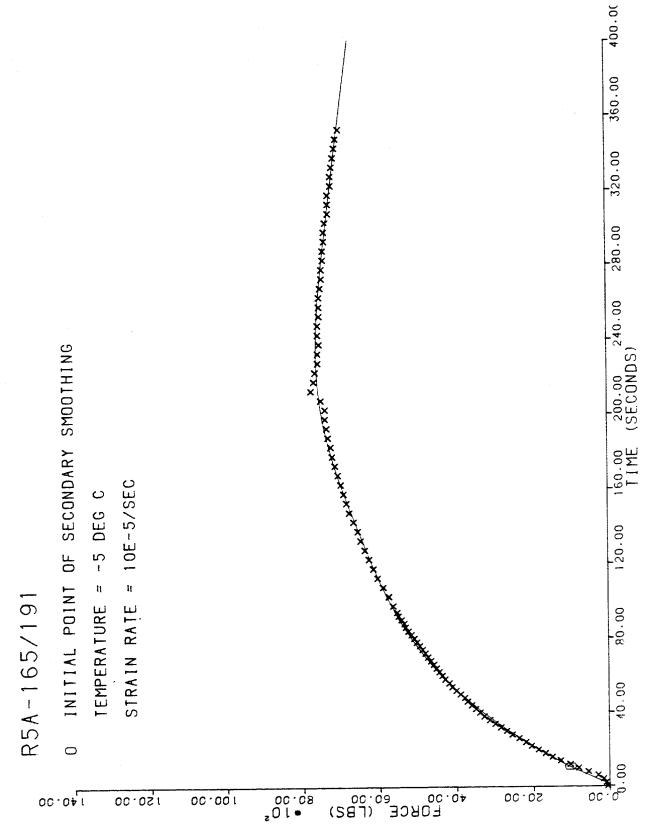


Fig. A-15 - Enlarged view of Figure A-14 near the origin.

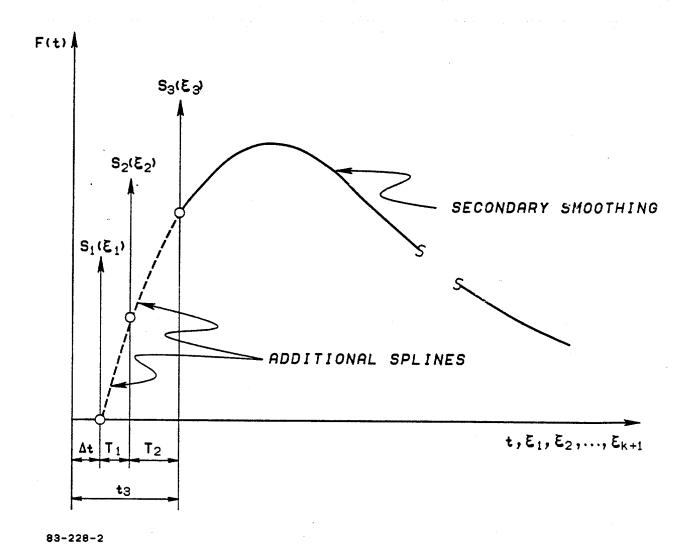


Fig. A-16 - Schematic diagram of the location of the two additional knots with respect to the secondary smoothing.

 $S_1(\xi_1)$ is found by constructing a cubic polynomial which satisfies the following conditions:

1.
$$s_1(0) = 0$$
,
2. $s'_1(0) = F'_{max}$,
3. $s'_1(0) = 0$,
4. $s_1(T_1) = s_2(0)$,
5. $s'_1(T_1) = s'_2(0) = F'_{max}$.

These five conditions are sufficient to find the four unknown constants of the cubic spline, $S_1(\xi_1)$, and the unknown time quantity, T_1 . Note that the application of conditions 3 and 5 in Equation (4) collapses the cubic polynomial into a linear curve which automatically forces continuity of the second derivative at T_1 .

After the two additional splines are found, the smoothing procedure is completed. Figure A-17 illustrates the type of fit obtained for the $10^{-3}/\text{sec}$ test using the additional two knot procedure. Again, an enlarged view of the fit is shown in Figure A-18 to illustrate the initial linear portion of the smooth curve and the continuity at the initial point of the secondary smoothing.

The particular technique used to determine the initial portion of the smooth curve depends on the initial conditions of the secondary smoothing and the maximum slope found in the primary smoothing. As a general rule, the shape of the $10^{-3}/\text{sec}$ tests is such that two additional knots are required to supplement the secondary smoothing. On the other hand, the $10^{-5}/\text{sec}$ tests seem to favor the technique requiring only one additional knot, although a few of those tests were found which required two knots to complete the smoothing.

The procedures discussed above describe the methods used to fit splines to fully developed force-time curves for both strain rates. These procedures are modified slightly for the $10^{-3}/\text{sec}$ tests which undergo premature failure. The first step in fitting splines for these tests is to determine the appropriate time for the end of the test. Figures A-19 and A-20 illustrate the force and strain time histories of a test having a premature failure. The strain history shows a jump in strain rate at approximately 3.75 seconds. At this time the strain rate deviates from the chosen test

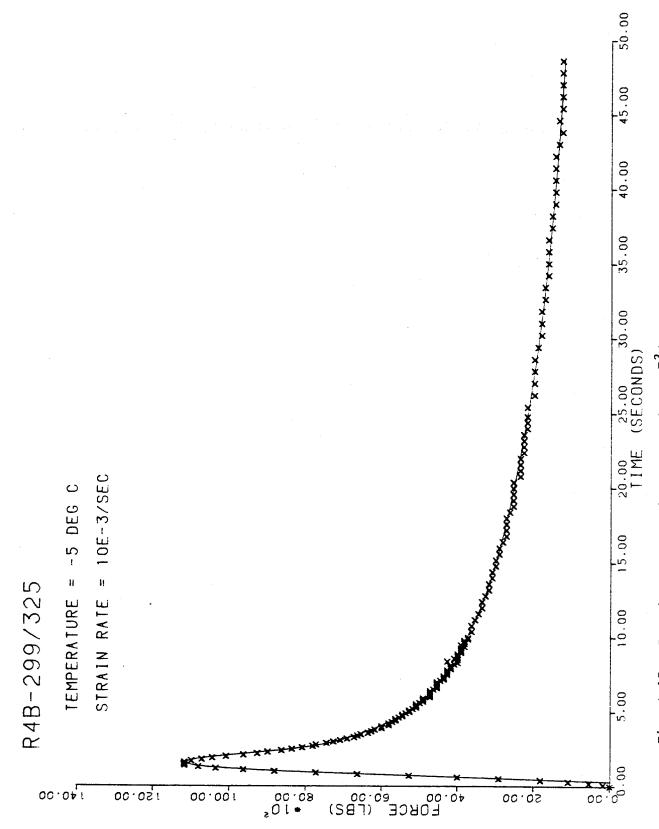


Fig. A-17 - Smooth curve obtained for a $\dot{\epsilon}$ = 10⁻³/sec test using two additional knots to supplement the secondary smoothing.

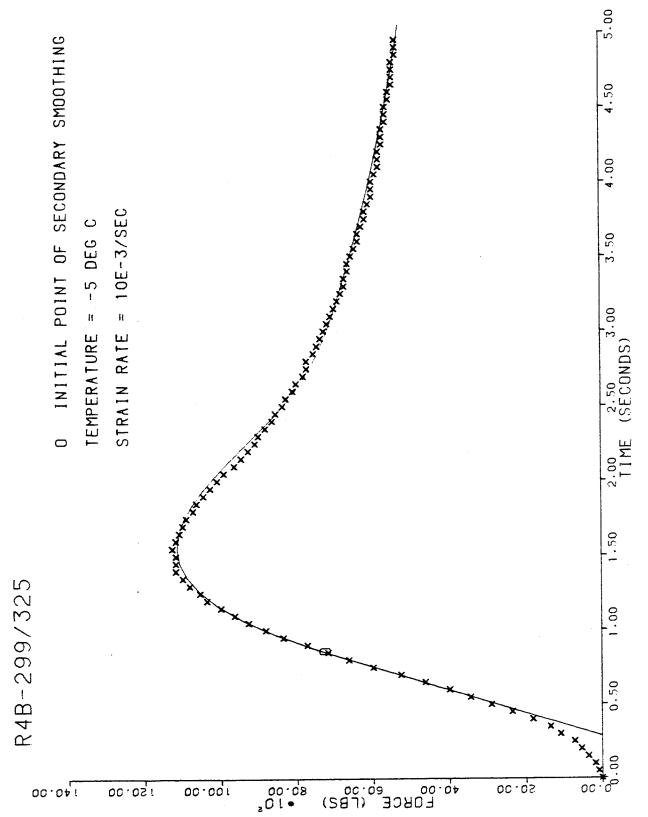
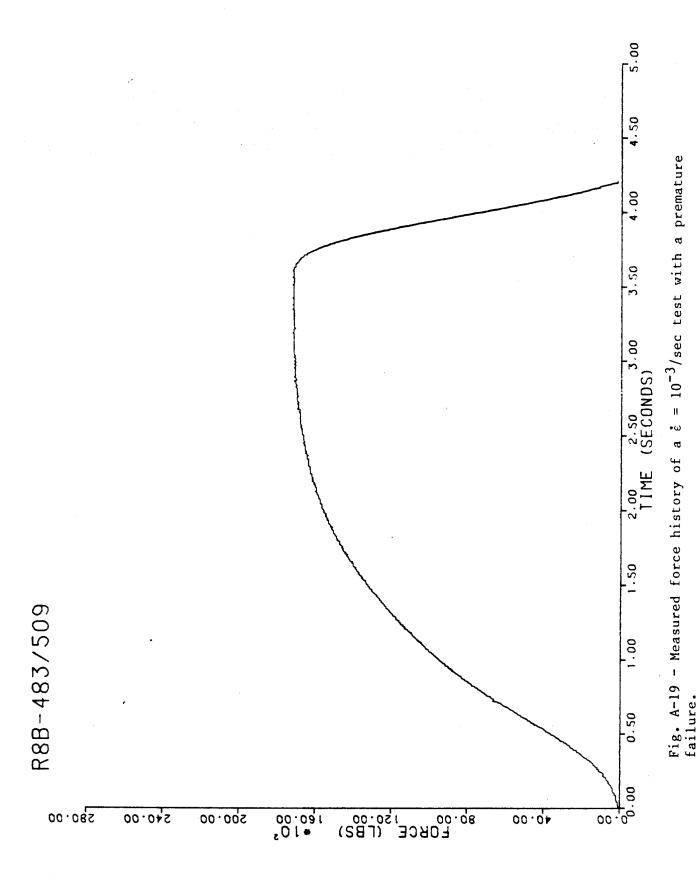
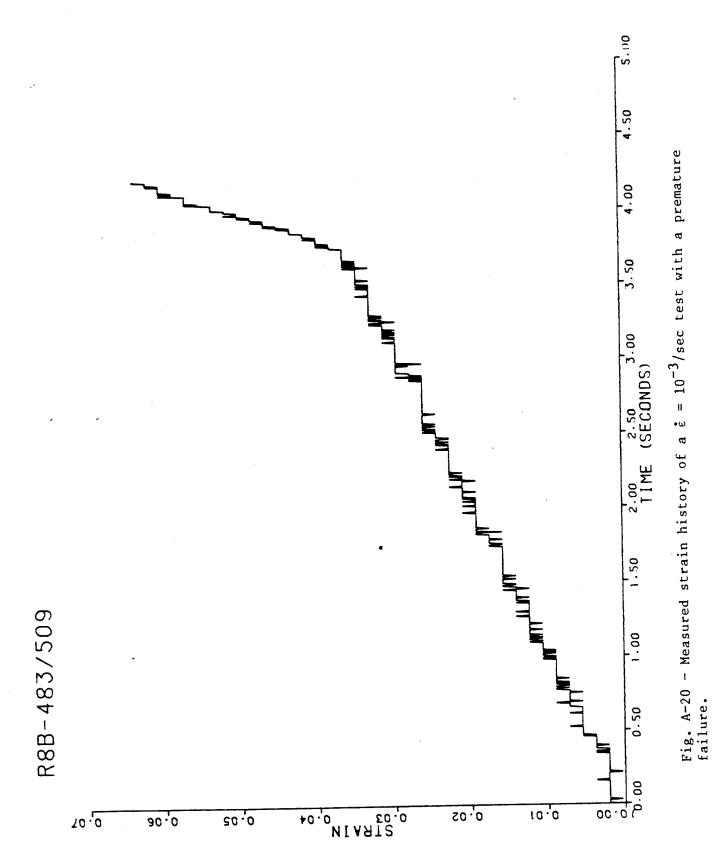




Fig. A-18 - Enlarged view of Figure A-17 near the origin.

gan Jahar ak asyai kya skii s

strain rate due to rupture of the sample. This time is chosen as the end of the test and all data points beyond this time are eliminated from the force time history.

Once the end of the test is determined, the remaining time record is divided into eight intervals by choosing nine equally spaced knots. Splines are found for each interval, and the maximum slope of the force-time curve is determined by finding the inflection point. All points prior to the inflection point are deleted and replaced by points on the line tangent to the inflection point and extending from the inflection point to the time axis. This method is illustrated schematically in Figure A-21 and is applied by manipulating the indices of the spline parameters and constructing the coefficients of the spline representing the linear portion of the curve. If the inflection point falls between the knots t_i and t_{i+1} , then t_i and all previous knots are deleted from the knot array. The remaining knots are renumbered by changing the i + j index to j + 2 where j = 1, 9-i. A new knot labeled t_2 is then placed at the inflection point, and a new knot labeled t_1 is placed at the intersection of the tangent and the time axis. Thus, the final number of knots is 11-i. The initial values and spline coefficients follow similar index changes. Since the tangent at the inflection point is used for the initial part of the force-time curve, continuity of the function and its first and second derivatives is guaranteed at the inflection point. Figure A-22 illustrates the initial smoothing of the entire time record and the construction of the tangent to the inflection point, and Figure A-23 illustrates the final smoothed force-time curve.

All of the above procedures provide a general approach for smoothing the various types of force-time curves encountered in the data set. However, in some cases, there are situations, such as two inflection points prior to peak stress or local maximum values, which render these procedures unsuitable for application. In these special cases, smooth curves are obtained by judiciously editing the data or by making individual modifications of the above procedures. In all cases, though, every effort is made to yield a consistent set of force-time curves which are faithful to the recorded data and conform to the guidelines discussed previously.

Regardless of the technique used to find the initial portion, the start time of each test is determined by shifting the global force-time coordinate axes to coincide with the local axes, $(\xi_1,S(\xi_1))$. The shift is easily

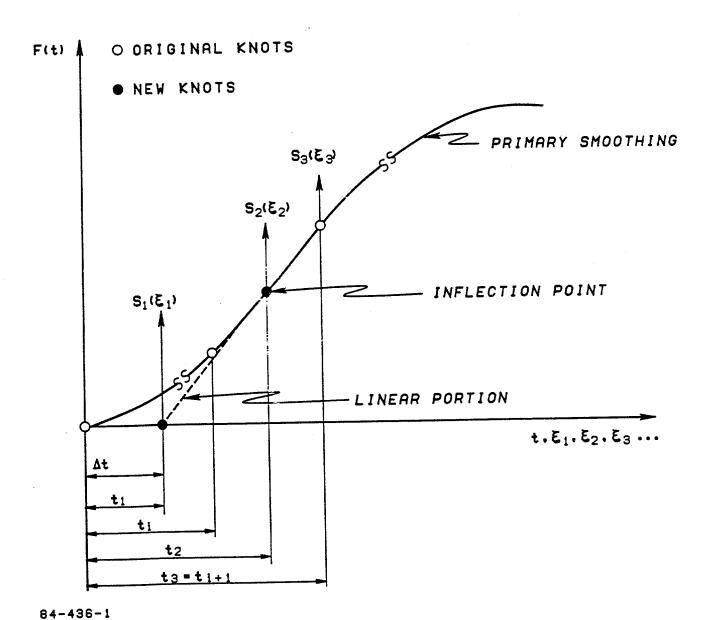


Fig. A-21 - Schematic diagram of the procedure to smooth tests with a premature failure.

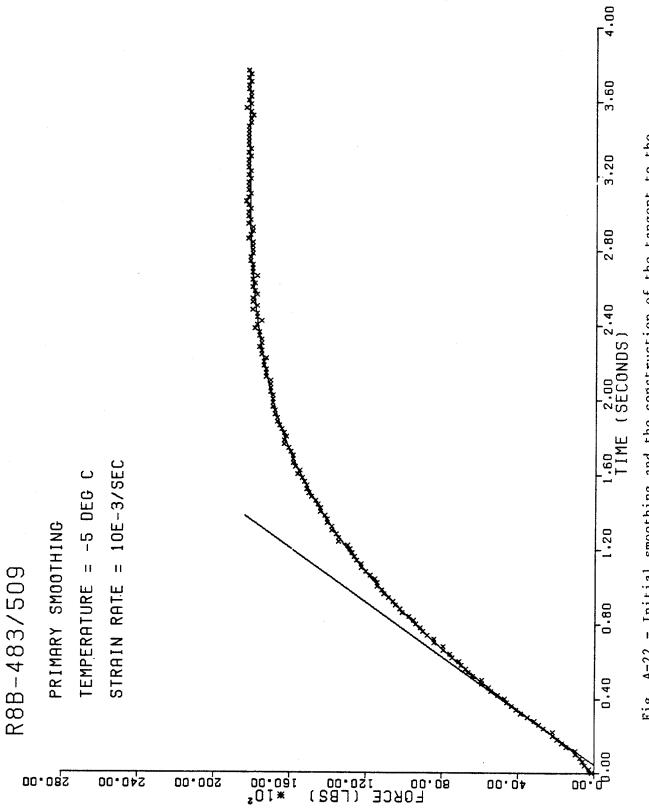


Fig. A-22 - Initial smoothing and the construction of the tangent to the inflection point for a test with a premature failure.

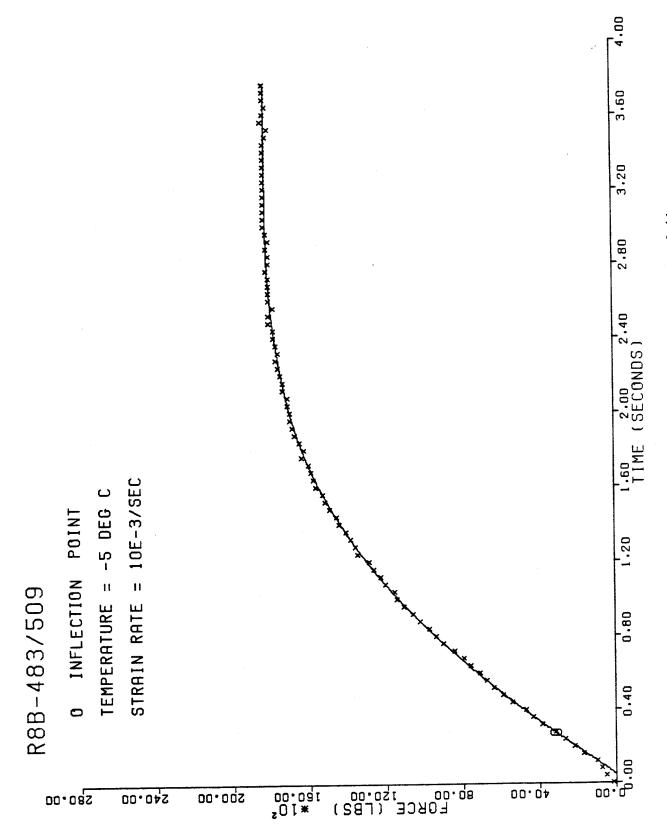


Fig. A-23 - Final smoothing for a test with a premature failure.

made with the coordinate transformation, $\bar{t}=t-\Delta t$, where $\Delta t=t_2-T_1$ when one additional knot is required, $\Delta t=t_3-T_2-T_1$ when two additional knots are required, and $\Delta t=t_1$ when a test has a premature failure. The quantity Δt is illustrated for each technique in Figures A-13, A-16, and A-21. The previously determined splines are valid in the new coordinate system as long as a similar transformation is made for each knot, i.e., $\bar{t}_1=t_1-\Delta t$. The amount of the time shift, Δt , is on the order of 8 sec for the $10^{-5}/\mathrm{sec}$ tests and 0.2 sec for the $10^{-3}/\mathrm{sec}$ tests. In each case the time shift is within the uncertainty of the start time.

After the time shift, the resulting function $F(\bar{t})$ represents the force history of the entire test. If the final number of knots is m, then $F(\bar{t})$ will consist of (m-1) branches, $S_i(\xi_i)$, defined on the intervals, $0 \le \xi_i \le \bar{t}_{i+1} - \bar{t}_i$, where $\xi_i = \bar{t} - \bar{t}_i$. The function, F(t), is continuous and has continuous first and second derivatives at every point. Furthermore, the maximum slope of $F(\bar{t})$ occurs at the origin and is equal to the maximum slope of the experimental data. The composite function is completely defined by the knots, \bar{t}_i , i=1, m, the initial value of each spline, y_i , i=1, (m-1), and the spline coefficients, C_{ij} , i=1, (m-1), j=1, 3. These values are tabulated in data files for each test and are shown in Table A-1 for test number R5A-165/191, Table A-2 for test number R4B-299/325, and Table A-3 for R8B-483/509.

As a final step, the strain history is shifted by the amount, Δt . Two knots are chosen at the beginning and end of the strain history and a cubic spline is found by calling the subroutine ICSVKU. This step is unnecessary since the strain history is linear for a constant strain rate test, but it does provide a check on the test strain rate. The check is made by comparing the coefficients returned by the subroutine. If the cubic and quadratic coefficients are several orders of magnitude smaller than the linear coefficient and if the linear coefficient is within 1% of the test strain rate, then the test is considered valid.

Once this check is completed, the force-time curve, $F(\bar{t})$ is used to generate the stress-strain curve by scaling the coordinate axes. The force axis is divided by the original cross-sectional area of the test sample and the time axis is multiplied by the test strain rate. The stress strain curves for test numbers R5A-165/191, R4B-299/325, and R8B-483/509 are shown in Figures A-24, A-25, and A-26, respectively.

Table A-1
SPLINE PARAMETERS FOR R5A-165/191

R5A-165/191
Temperature = -5°C
Strain Rate = 10E -5/Sec

I	T(I)	Y(I)	C(I,1)	C(I,2)	C(I,3)
	00000	.00000	130.85	-3.6589	.11879
1	.00000	929.77	94.283	59617	.15679-02
2	8.5945		37.120	29418	.15703-02
3	72.798	4940.6	18.763	82711-02	95727-03
4	137.00	6526.7	= -	17611	.82803-03
5	201.20	7512.1	7.9873	13885	.79035-03
6	216.20	7595.1	3.2630		.35774-04
7	269.45	7494.5	-4.8010	12609-01	82040-05
8	472.95	6296.8	- 5.4883	.92319-02	
9	787.00	5229.6	-2.1172	.15026-02	50542-06
10	1603.2	4227.7	67447	.26502-03	50521-07
11	2894.1	3690.0	24280	.69364-04	14443-07
12	4870.2				

A-35 BRC 45-85

e stand we can also colored as by the energy of

Table A-2

SPLINE PARAMETERS FOR R4B-299/325

R4B-299/325 Temperature = -5°C Strain Rate = 10E -3/Sec

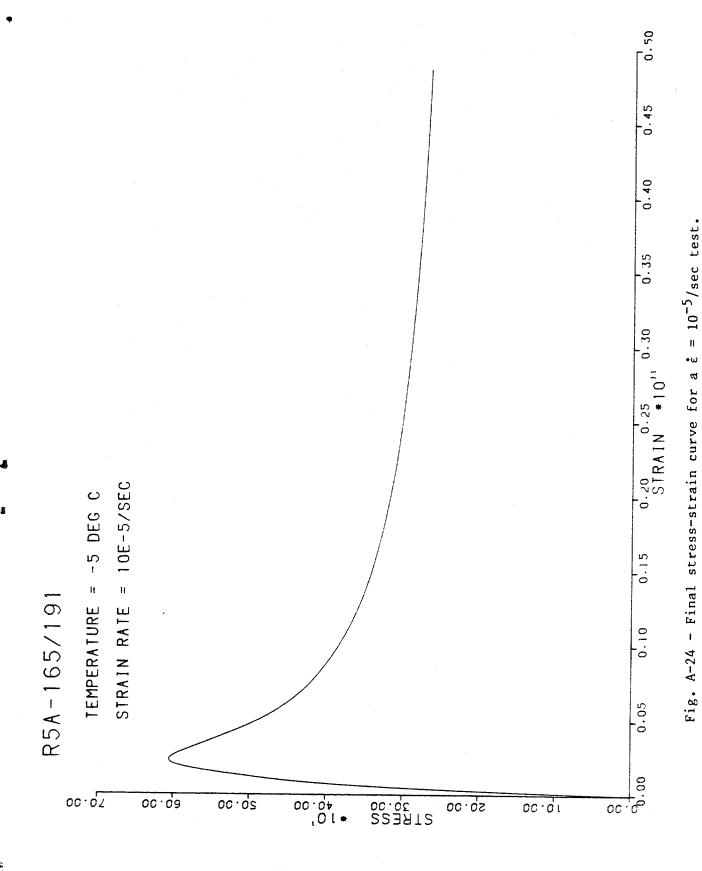

I	T(I)	Y(I)	C(I,1)	C(I,2)	C(I,3)
1	.00000	.00000	12769.	.00000	•00000
2	.54611	6973.2	12769.	.00000	33446+06
3	.55794	7123.8	12628.	-11878.	2825.1
4	.82794	9723.2	6832.2	-9589.6	2906.2
5	1.0979	10926.	2289.4	-7235.6	2671.8
6	1.3479	11088.	-827.47	-5231.7	2937.4
7	1.5979	10600.	-2892.6	-3028.7	2816.6
8	2.2723	8135.6	-3134.6	2669.9	-1241.2
9	2.9309	6874.7	-1232.9	217.53	-16.225
10	7.1064	4338.0	-264.98	14.290	37480
11	18.190	2646.3	-86.343	1.8275	18087-01
12	48.628				

Table A-3

SPLINE PARAMETERS FOR R8B-483/509

R8B-483/509
Temperature = -5°C
Strain Rate = 10E -3/Sec

ı	T(I)	Y(I)	C(I,1)	C(I,2)	c(I,3)
1 2 3 4 5 6 7 8 9	.00000 .20898 .23329 .59068 1.0609 1.8089 2.3024 2.4717 3.4310 3.7131	.00000 2889.8 3225.2 7675.1 12263. 16535. 17656. 17883. 18198.	13828. 13828. 13737. 11261. 8183.4 3375.5 1517.6 1129.7 136.23	.00000 .00000 -3866.6 -3060.8 -3483.8 -2944.1 -820.76 -1470.9 435.26	.00000 -54684. 751.57 -299.87 240.55 1434.3 -1279.9 662.31 -3364.5

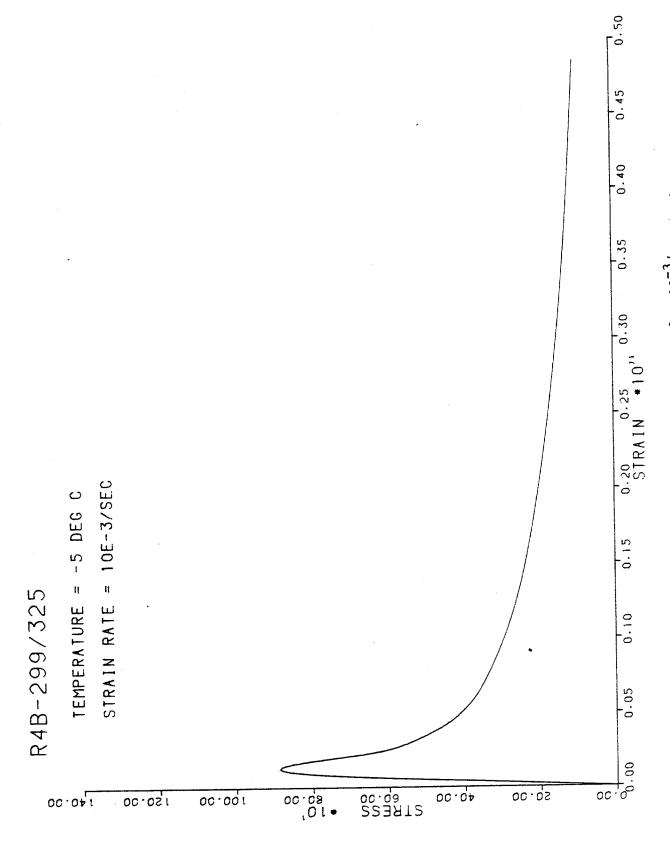


Fig. A-25 - Final stress-strain curve for a $\dot{\epsilon} = 10^{-3}/\text{sec}$ test.

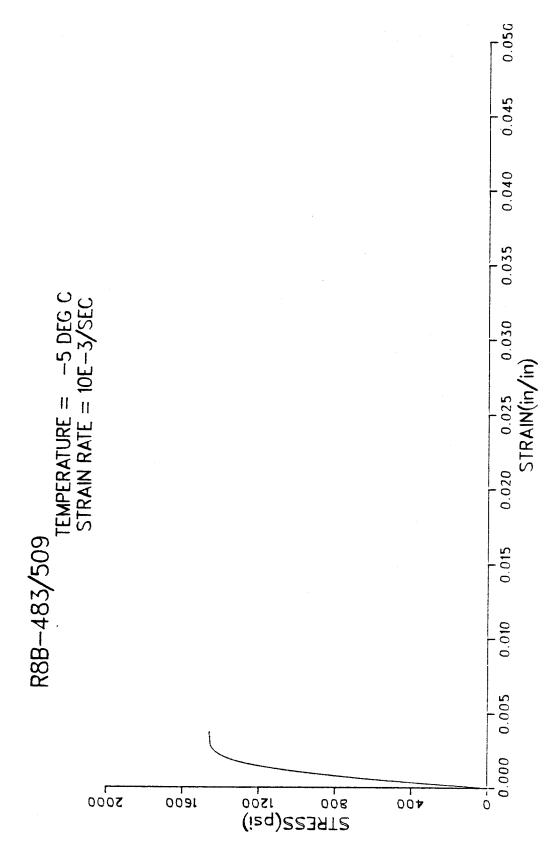


Fig. A-26 - Final stress-strain curve for a test with a premature failure.

THE UNIAXIAL MECHANICAL RESPONSE OF MULTI-RIDGE ICE

VOLUME III APPENDIX B - CUBIC SPLINES FORCE-TIME HISTORIES

BY

J. F. DORRIS AND J. S. AUSTIN

TECHNICAL PROGRESS REPORT

BRC 45-85 OCTOBER 1985

Project No. 327-27802.34 Mechanical Properties of Sea Ice

SHARED - Under the Research Agreement between SIRM, and Shell Oil Company dated January 1, 1960, as amended.

Reviewed by:

E.G. Ward

E.N. Earle

Participant:

C.A. Gutierrez

Released by:

J.H. Lybarger

Reference:

Based on work through December 1983.

ممرسك

r

B-1 BRC 45-85

Appendix B

CUBIC SPLINES FOR FORCE-TIME HISTORIES

		Page
Strain Rate = $(10E-5)/sec$, T	Temperature = -5°C	B-3
Strain Rate = $(10E-5)/sec$, T	Temperature = -20°C	B-29
Strain Rate = (10E-3)/sec, T	Temperature5°C	B-45
Strain Rate = $(10E-3)/sec$, T	Temperature = -20°C	B-71

	and the second of the second o	
		-
		
	•	
		:
•		

Appendix B

SPLINE COEFFICIENTS FOR FORCE-TIME HISTORIES

,

B-3 BRC 45-85

STRAIN RATE = (10E-5)/SEC TEMPERATURE = -5°C

·

B-5 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	0(1,2)	C(I,3)
R1A-062	/089					
	1	.00000	.00000	121.23	-5.4627	.24920
	2	6.4 955	624.96	81.675	62622	.18114-02
	3	115.34	4431.7	9.7334	34746-01	.43490-04
	4	243.22	5199.2	2.9804	18061-01	.21083-04
	5	399.20	5304.6	-1.1151	81952-02	.96485-05
	٤	473.44	5180.6	-2.1723	60464-02	.29435-04
*	7	569.66	4941.8	-2.5183	.24506-02	14877-05
	8	921.02	4295.0	-1.3472	.88241-03	+.44503-06
	9	1359.3	3836.6	83024	.29730-03	.44105-07
	10	2180.3	3379.8	25291	.40592-03	51000-05
	11	2482.9	3324.3	14735	57124-04	.27582-07
	12	4848.8				
R1B-062	/089					
	1	.00000	.00000	58.669	-1.7297	.55603-01
	2	8.9335	425.72	41.077	23951	.56948-03
	3	150.50	3056.6	7.5037	.23453-02	12252-03
	4	235.43	3635.7	5.2504	28875-01	.68527-04
	5	343.02	3951.7	1.4169	67565-02	.41557-05
	6	589.00	3953.3	-1.1527	36399-02	.81864-05
	7	799.57	3623.4	-1.6177	.14815-02	17889-05
	. 8	1104.3	3217.4	-1.2131	15376-03	.34384-05
	9	1313.3	2990.4	80068	.21274-02	34903-05
	10	1494.7	2894.3	37338	.22734-03	55753-07
	11	3151.3	2646.2	79164-01	49733-04	.51011-07
	12	4870.3			•	•
R2A-140	/165					
	1	.00000	.00000	61.973	.00000	.00000
	2	9.7479	604.10	61. 973	.00000	65951-01
	3	12.128	750.73	60.834	47813	.12504-02
	4	165.14	3344.0	2.3375	.95839-01	56882-03
	5	240.69	3822.4	7.0785	33086-01	.74459-04
	٤	372.77	4351.7	2.2354	35826-02	49437-05
	7	557.12	4611.0	.41040	63167-02	.18470-04
	8	669.27	4 603 .7	30952	10284-03	17013-05
	9	1086.0	4333.7	-1.2816	22297-02	.49337+04
	10	1171.1	4238.9	58860	.10370-01	14168-08
	11	1202.7	4226.2	35711	30293-02	.59884-05
	12	1384.5	4097.1	86475	.23832-03	24702-07
	13	4852.1				

B-6 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(I,2)	C(I,3)
R2B-094/	/121					
	1	.00000	.00000	25.204	.00000	.00000
	2	46.852	1180.9	25.204	.00000	59923-01
	ŝ	48.141	1213.2	24.905	23160	.69691-03
	4	80.641	1801.9	12.060	16365	.72269-03
	5	113.14	2045.8	3.7131	93184-01	.70672-03
	દ	145.64	2092.3	10445	24279-01	.13876-03
	7	160.64	2085.8	73915	18035-01	.13508-03
	é	205.47	2028.6	-1.5418	.13002-03	.65339-05
	9	382.93	1795.6	87826	.36087-02	70950-05
	10	503.03	1729.9	31847	.10524-02	80112-05
	11	921.01	1722.1	.14141	.47847-04	16529-07 .52 4 17-08
	12	2854.7	2054.9	.14104	48038-04	.52417-00
	13	4889.0				
					•	
R3A-106	/131	•				
	1	.00000	.00000	41.464	.00000	.00000
	2	6.4259	266.44	41.464	.00000	34620-02
	ŝ	25.226	1022.9	37.793	19525	.41063-03
	4	148.44	3483.5	8.3792	43464-01	.98149-04
	5	261.56	4017.2	2.3139	10157-01	.14484-04
	Ĕ.	457.64	4189.6	.12273-02	16371-02	.51214-06
•	7	551.78	4175.6	29340	14924-02	.24962-05
	é	764.63	4069.6	58946	.10151-03	12679-06
	9	1168.2	3840.0	56947	51968-04	.76515-06 85556-06
	10	1357.7	3 735. 3	50669	.38320-03	6 55555-05
	11 *	1471.5	3681.7	44496	.15951-03	13412-07
	12	1863.2	3528.9	34285	.10112-03	13412-07
	13	4847.9				
R3B-161	1/18/				00000	.00000
	1	.00000	.00000	29.018	.00000	42464-02
	2	50.188	1456.4	29.018	.00000	.36789-03
	3	62.404	1803.1	27.117	15562 39555-01	.97276-04
	4	167.57	3361.6	6.5905		.26794-04
	5	251.30	3693.2	2.0125	15120-01 10252-02	23029-05
	ė.	426.65	3725.6	81858	15304-02	.57817-05
	7	4 99.77	3659.4	-1.0054	.12500-02	18165-05
	ខ	660.07	3482.7	-1.0504 78355	.32903-03	17235-07
	9	829,06	3332.1	57782	.31245-03	98471-07
	10	1149.8	3114.1	40780	.21771-03	58627-07
	11	1470.5	2957.7	14469	.33513-04	23631-08
	12	2517.9	2702.1	++07	,000.0 9	
	13	4860.6				

	I	T(I)	Y(I)	C(I,1)	0(1,2)	6(1,3)
R4A-312	/338					
	1	.00000	.00000	60.554	-2.1260	.11845
	2	5.0575	267.22	48.153	32588	.79478-03
	3	151.41	2826.0	3.8377	.23086-01	18184-03
	4	239.23	3217.9	3.6858	24817-01	.71250-04
	5	350.46	3418.9	.80951	10414-02	10746-04
	6	503.63	3479.8	26586	59794-02	.26959-04
	· 7	570.39	3443.5	70377	58052-03	.95143-06
	8	879.44	3198.6	78997	.30161-03	.16921-07
	9	1359.7	2890.6	48855	.32599-03	19046-06
•	10	1713.7	2750.1	32935	.12372-03	20643-07
	11	3147.7	2471.4	10186	.34918-04	10381-07
	12	4862.7				
R4B-328	/354					
	1	.00000	.00000	26.570	63332-01	17580-03
	2	58.371	1300.2	17.379	94117-01	.23525-03
	3	183.44	2461.8	4.8765	58528-02	41129+04
	4	258.48	2777.4	3.3033	15112-01	.29574-04
	5	383.54	3012.0	.91111	40156-02	44990+08
	۵	499.57	3063.0	38907-01	41723-02	.12513-04
	フ	564.45	3046.3	42229	17366-02	.24247-05
	8	818.81	2844.4	83511	.11365-03	.21884-04
	タ	1147.5	2612.0	68948	.32944-03	67669-07
	10	1859.2	2263.8	32336	.18495-03	52184-07
	11	2817.3	2077.8	11266	.34964-04	50906-08
	12	4776.5		, .		
R5A-165	/191	•				
•	1	.00000	.00000	130.85	-3.6589	.11879
	2	8.5945	929.77	94.283	59617	.15679-02
	3	72.798	4940.6	37.120	29418	.15703-02
	4	137.00	6526.7	18.763	.82711-02	95727-03
	5	201.20	7512.1	7.9873	17611	.82803-03
	٤	216.20	7595.1	3.2630	13885	.79035-03
	7	269.45	7494.5	-4.8010	12609-01	.35774-04
	ខ	472.95	<i>6296.8</i>	-5.4883	.92319-02	82040-05
	9	787.00	5229.6	-2.1172	.15026-02	50542-06
	10	1403.2	4227.7	67447	.26502-03	50521-07
	11	2894.1	3690.0	24280	. 69364-04	14443-07
	12	4870.2				

B-8 BRC 45-85

	I	T(I)	Y(I)	0(1,1)	C(I,2)	0(1,3)
					ڪ شاه جيم ڪا حاله جيم	
R5B-075	/101					
	1	.00000	.00000	100.13	.00000	.00000
	2	15.689	1571.0	100.13	.00000	68682
	3	15.932	1595.3	100.01	49889	.10633-02
	4	79.172	6193.8	49.670	29716	.10709-02
	5	142.41	8417.4	24.935	93978-01	65284-03
	٤	205.65	9453.3	5.2163	21783	.62876-03
	7	211.05	9475.3	2.9187	-,20764	.59102-03
	é	404.42	6549.0	-11.085	.13522	70743-03
	9	481.23	6174.7	-2.8339	27789-01	.28957-03
	10	516.06	6054.5	-3.7159	.24673-02	81669-06
	11	1178.9	4437.7	-1.5215	.84332-03	21624-06
	12	2281.2	3495.6	45061	.12820-03	95451-08
	13	4865.8				
R7A-059	/085			•		
		.00000	.00000	61.317	75276	.11034-01
	1 2	13.697	726.97	46,906	29936	.70043-03
	3	183.98	3492.3	5.8828	.58451-01	5 8873-03
	.5 4	245.28	3937.0	6.4118	49821-01	.20156-03
	5	322.33	4227.4	2.3242	32318-02	76586-05
	5 6	482.79	4485.5	.69547	69186-02	.12387-04
	~ 7	621.89	4481.7	51023	17495-02	.23824-05
	9	518.98	4331.4	92221	34082-03	.92509-06
	ଚ	1100.1	4065.8	89448	.43947-03	99384-07
	10	2114.6	3504.9	30965	.13700-03	31221-07
	11	3705.6	3235.3	11079	12014-04	.43202-07
	12	4862.3		•		•
,		W.C.C. 2. C.				
R7B-126	./152					allema de
	1	.00000	.00000	41.102	88931-01	21353-02
	2	24.060	907.70	33.114	24306	.64817-03
	3	156.87	2534.7	2.8504	.15197-01	12781-03
	4	236.56	2795.7	2.8375	15358-01	.32428-04
	5	349.3 8	2977.6	47409	24374-02	38662-05
	<u>6</u>	512.47	2984.2	46100	40971-02	.13948-04
	7	624.93	2900.4	85332	.60855-03	.64233-07 29935-05
	ទ	962.94	2732.7	55284	.65439-03	.22129-06
	9	1550.9	2564.6	77511-01	.36465-04	40746+06
	. 10	1813.6	2550.7	12534-01	.21087-03	40746-06
	11	2001.3	2553.1	.23562-01	18507-04	. 50350-05
	12	4862.4				

B-9 BRC 45-85

I	T(I)	Y(I)	C(I,1)	0(1,2)	C(I,3)
RSA-133/159					
1	.00000	.00000	56.513	-1,0002	.16221-01
2	15.304	688.77	37.297	25542	.67732-03
3	125.06	2601.0	5.7078	32395-01	.72840-04
4	234.82	2933.6	1.2290	84113-02	.15380-04
5	395.06	2977.8	28198	10177-02	16513-05
٤	470.79	2949.9	46454	13929-02	.37429-05
7	637.63	2851.0	61677	.48041-03	21004-04
8	205.16	2760.2	47348	.43041-03 .37483-03	
<u> </u>	. 1581.1	2556.0	13319		13365-06
10	1939.1	2519.0		.63701-04	.54379-07
11	2342.6	2506.9	66673-01	.12210-03	77606-07
12	4856.7	2506.9	60458-02	.28154-04	91061-08
RSB-162/189					
1	.00000	.00000	36.944	-,74627-01	276 45 -63
2	62.633	1953.2	24.342	12657	.28017-03
2 3	186.47	3558.7	5.8837	22487-01	.23542-04
4	260.77	3881.4	2.9320	17240-01	.40878+04
Ė	354.88	4038.7	.77323	56983+02	
6	596.62	3980.2	-,8953&		.61968-05
7	741.35	3838.8	96511	12042-02	.44348-05
8	897.17	3703.6		.72227-03	61912-06
9	1539.4		78512	.43286-03	18074-06
10	1784.7	3330.0	45276	.84620-04	.56015-06
11		3232.4	31020	.49672-03	94237-06
	1959.8	3188.2	22293	.15090-05	.11512-07
12	4812.9				
R 3 0- 09 5/122			•		,
1	.00000	.00000	22.183	.00000	.00000
2	48.204	1069.3	22.183	.00000	18437-01
3	50.07 3	1110.6	21.990	1033&	.22265-03
4	162.96	2596.1	7.1652	27958-01	.47077-04
5	275.85	3116.5	2.6527	12015-01	.20891-04
٤.	427.81	3315.4	.44831	24914-02	19154-04
7	486.41	3329.3	41051-01	58590-02	.25481-04
8	545.80	3311.5	46735	13189-02	.19031-05
9	793.63	3143.6	77043	.96024-04	.35908-05
10	1248.4	2844.9	46032	.58595-03	16250-05
11	1324.2	2814.7	39947	.21616-03	46374-07
12	2782.6	2548.0	64862-01	.13277-04	.10146-07
13	4879.4	207010	.04002-01	* ***//-O4	.10146-07
	•				

B-10 BRC 45-85

	I	T(I)	Y(I)	C:(1,1)	C(I,2)	0(1,3)
R3D-159.	126					
	1	.00000	.00000	33.659	.00000	.00000
	2	14.262	480.06	33.659	.00000	46272-01
	3	16.290	547.94	33.088	28155	.90579-03
	4	115.73	1944.9	3.9646	11339-01	.12804-04
	Ś	352.17	2417.6	.75023	22564-02	.25250-05
	Ł.	&&8.15	2509.1	.80609-01	.13726-03	14035-05
	7	940.63	2512.8	15720	10100-02	.22480-04
	8	1003.6	2504.5	16789-01	.32387-02	29030-04
	9	1048.2	2507.6	.98935- 01	64084-03	.14536-05
	10	1175.9	2512.8	.63763-02	83947-04	.65078-07
	1 1	2026.1	2497.6	.47634-02	82045-04	24927-06
	12	2168.5	2499.2	.12965-01	24461-04	.70520-08
	13 .	4500.0				
R50-039	1066					
Rab-04*	rusu					
	1	.00000	.00000	86.520	27203	48751-02
	2	26.501	2011.1	61.831	65961	.23107-02
	3:	140.92	3911.7	1.6412	.13354	95745-03
	4	209.57	4344.0	6.4419	63632-01	.25588-03
	5	296.53	4591.3	1.1800	.31209-02	35330-04
	E	431.56	4720.5	.90296-01	11191-01	.65170-04
	7	479.26	4706.5	53249	18653-02	.20462-05
	8	841.43	4366.1	-1.0734	.35790-03	.48257-06
	9	1115.2	4107.6	77390	.75428-03	38565-05
	10	1194.7	4048.9	72707	16487-03	.67430-06
	11	1415.6	3987.5	70119	.28205-03	41697-07
*	12	4887.6				
R5D-159	7186					
	_	****	ana ana	24.638	.00000	.00000
	1	.00000	.00000 794.93	26.638	.00000	74732-03
	2	29.842	1954.1	21.833	10380	.21364-03
	3	76.139	3754.1	5.1785	.10007-01	14525-03
	4	253.71		3.0456	32087-01	.20011-03
	5	350.31	4216.S 4344.1	1.5316	.10986-01	15511-03
	<u> </u>	422.05		1.6651	76528-02	.74477-05
	7	462.11	4413.1 4367.4	94857	.40920-03	58574-04
	8	822.93	4367.4 4028.5	89453	-,26920-03	.18124-05
	9	1209.0	4028.5 3890.8	84821	.56949-03	21582-04
	10	1363.2	3439.1	34729	.13192-05	.79522-08
	11	2240.8	3437.1	32739	.21831-04	.58673-07
	12	3100.6	3140.0	• 44/4/		
	13	4829.0				

B-11 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(1,2)	0(1,3)
R6C-166/193	,				
1	.00000	.00000	39.467	.00000	.00000
2	9.4750	373.95	39.467	.00000	14988-01
3	16.920	661.60	36.974	33476	.12185-02
4	99.915	2121.0	6. 5 880	31367-01	.60977-04
5	182.91	2486.6	2.6416	16184-01	.44852-04
٤	263.78	2618.1	.90391	53022-02	75598-05
7	338.29	2652.9	12129-01	69922-02	.78042-04
8	365.56	2648.9	21938	60696-03	.10423-05
9	815.01	2522.4	13330	.79854-03	74175-05
10	875.55	2515.6	11816	54837-03	.56727-05
11	935.99	2507.7	12227	.48033-03	28858-04
12	1504.1	2540.3	.14408	11523-04	35442-08
13	4888.5		*******	*************	100442 00
R8C-048/075					
1	.00000	.00000	62.839	-1.8539	.91190-01
$\overline{2}$	5,2510	292.05	50.912	41743	.12498-02
3	120.34	2527.6	4.4912	.14096-01	25912-03
4	197.35	2838.8	2.0523	45767-01	.32361-03
5	241.48	2868.0	96387-01	29215-02	.42511-05
6	480.98	2735.8	76428	.13281-03	.19035-04
7	1172.7	2333.6	30728	.52782-03	51457-06
ė	1601.0	2258.4	13832	13333-03	.43075-06
9	2057.9	2208.5	.96271-02	.45713-03	58878-04
10	2884.4	2195.4	44523	10062-02	.55098-05
11	2992.5	2143.4	47267	.74761-03	29289-06
12	4885.4			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*27207 00
R8D-236/263					•
1	.00000	.00000	55.428	.00000	.00000
2	15.315	848.85	55.428	.00000	38184
3	15.685	869.40	55.271	42487	.14954-02
4	82.805	3117.3	18.447	12375	.30903-03
5	193.03	4060.9	2.4300	21564-01	.15101-04
ė.	257.68	4132.0	16903	18435-01	.79298-04
7	318.64	4070.4	-1.5549	41332-02	.20160-04
S	426.04	3890.5	-1.7471	.23620-02	14759-05
9	724.05	3530.5	73259	.10425-02	79003-06
10	1074.8	3347.7	29290	.21118-03	38510-07
11	1734.2	3255.4	64636-01	.13500-03	13994-08
12	1860.4	3249.1	37238-01	.81988-04	19927-07
13	4881.4		10/200 01	.01/00 04	• • > > = 1 = 0 /
	· ·				

B-12 BRC 45-85

	1	T(I)	Y(I)	C(I,1)	C(1,2)	C(I,3)
-						
R1A-226/2	252					
	1	.00000	.00000	161.61	-38.971	4.5129
	2	2.8505	248.53	49.441	37384	.10141-02
	3	65.170	2103.7	14.034	18927	.10171-02
	4	127.49	2489.4	2.2941	.88252-03	13964-03
	5	189.81	2602.0	.77708	25224-01	.65241-04
	٤	204.81	2608.2	.64411-01	22287-01	.65945-04
	7	334.32	2386.0	-2.3902	.33336-02	20659-05
	8	694.06	1861.3	79385	.11040-02	88292-05
	9	1053.8	1677.5	34231	.15116-03	85178-08
	10	1479.9	1558.5	21811	.14028-03	70973-07
	11	1845.1	1494.1	14408	.62519-04	67951-08
	12	4865.4				
R1A-399/	425					
	4	00000	.00000	132.75	-27.033	3.5769
	1	.00000 2.4554	215.93	64.693	- 68551	.24748-02
	2	2.4004 98.589	2298.5	1.5054	.28218-01	19623-03
	3 4	194.72	2529.7	1.4903	28375-01	.15143-03
	•	174.72 252.40	2550.3	27164	21714-02	.30822-05
	5		2409.9	78139	37833-04	.82827-06
	6	483.14	2215.0	62579	.62294-03	82938-06
	7	749.07	2213.0	49215	.23545-03	11129-06
	8	904.72	1891.9	32891	.32151-04	.40647-06
	9	1514.3	1810.2	21144	.37984-03	57432-06
	10	1799.4	1778.0	12819	.28937-04	27233-08
	11 12	2003.1 4383.7	1773.0	12517	120,0,	
R2A-205/	230					
		.00000	00000	73.431	.00000	.00000
	1	2.3976	176.06	73.431	.00000	47598-01
	2	2.3978 7.1524	520.09	70.202	67895	.25157-02
		7.1524 98.954	3189.2	9.1471	.13874-01	13573-03
	4		3907.8	8.8929	17204-01	18619-05
	5	175.28	4909.8	2.9239	- 18148-01	.42617-04
	6	344.12	5009.5	1.5352	12320-01	13620-04
	7	389.70		-2.1647	78390-03	79405-05
	€:	672.05	4767.3 4609.7	-2.1647 -2.1536	.93845-03	37983-07
	9	744.35		-1.6548	.90767-03	27761-06
	10	1014.5	4095.6	-1.6343 68583	.13343-03	15897-05
	11	1944.2	3118.6	52176	.89740-03	14140-05
	12	2104.4	3018.6	-, Jan 1 / C	.07/40 03	•••••
	13	2900.0				

B-13 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(1,2)	C(1,3)
R2A-31	4/339					
	1	.00000	.00000	54.240	.00000	.00000
	2	.52849	28.666	54.240	.00000	22700-01
	3	4.7632	256.63	53.019	28838	.56587-03
	4	88.050	2998.9	16.758	14699	.56665-03
	5	171.34	3702.4	4.0647	54109-02	13357-03
	٤	254.62	3926.2	.38378	38784-01	.15931-03
	7	318.14	383 4. 9	-2.6151	84277-02	.23154-04
	8	535.42	3106.4	-2.9978	. 66660-02	78359-05
	9	804.07	2630.2	1.1128	.35062-03	.18948-05
	10	1114.3	2375.3	34767	.21159-02	15009-04
	11	1160.0	2362.4	24832	.57289-04	.55149-08
	12	2253.0	2166.6	10332	.75372-04	23203-07
	13	4856.3				
R28-40	8/434					
	1	.00000	.00000	58.555	50687	.51581-02
	2	13.288	700.68	47.817	30124	.67532-03
	3	191.64	3477.7	4.8061	.60085-01	94559-03
	4	222.56	3655.8	5.8097	27625-01	.58294-04
	5	361.59	4086.3	1.5087	33100-02	.28271-06
	٤.	523.03	4244.7	. 46206	31731-02	.28224-05
	7	975.26	4065.8	67624	.65611-03	11711-05
	8	1202.7	3932.2	55952	14283-03	.48731-06
	9	1647.7	3497.8	39715	.50771-03	64707-05
	10	1921.3	3613.9	26465	23507-04	.73349-07
	11	2471.7	3473.4	22386	.97606-04	20701-07
	12	4855.5			* > > 0000-04	20/01-0/
R2B-468	8/494					
	1	.00000	.00000	67.073	-1.3423	.26930-01
	2	12.311	672.52	46.267	34778	
	3	134.72	2860.2	3.6529	35510-03	.94610-03
	4	257.12	3208.9	1.2842	18996-01	50763-04
	5	301.19	3239.3	.340&&	24145-02	.12543-03
	6	600.75	3188.1	47128	29593-03	.23575-05
	7	910.07	3033.1	46860	.30460-03	.64714-06
	ė	1200.5	2909.1	43220	17925-03	55541-06
	9	1443.5	2804.5	38367		.76553-06
	10	1568.2	2761.3	36367 31978	.37895-03	65630-06
	11	3150.2	2498.6	69677-01	.13344-03	22924-07
	12	4869.2	24/010	.676//-01	.24643-04	51972-08

B-14 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(1,2)	0(1.3)
R3A-220	0/245					
	1	.00000	.00000	22.971	.00000	.00000
	2	54.161	1244.1	22.971	.00000	49775-02
	3	61.921	1420.1	22.072	11588	.25145-03
	4	163.92	2732.6	6.2802	38937-01	.95300-04
	க்	265.92	3069.2	1.3115	97753-02	.11740-04
	Ě	367.92	3113.7	31624	61818-02	.33182-04
	7	382.92	3107.7	47929	46876-02	.32371-04
	é	423.74	3082.5	70018	72314-03	.11939-05
	9	797.81	2781.9	73999	.61672-03	55739-06
	10	938.06	2688.7	59989	.38220-03	11021-06
	11	2067.0	2340.0	15830	.89752-05	.38591-06
	12	2136.9	2329.2	15140	.89871-04	18373-07
	13	4819.7				
R3A-43	0/456					
	· · · · · ·				·	40001
	1	.00000	.00000	131.30	-10.055	.48326
	2	6.6034	567.73	61.723	48145	.12591-02 42889-03
	3	151.53	3233.5	1.5096	.65976-01	.23941-03
	4	238.49	3581.6	3.2546	45908-01	
	5	316.98	3670.0	.47305	.10473-01	60824-04
	6	426.05	3767.3	.58 6 96	94285-02	.25024-04 .51750-06
	7	544.03	3746.4	59285	57129-03	16478-06
	8	1188.7	3265.4	68421	.42958-03	.11396-06
	9	1961.1	2917.3	31551	.47740-04	19059-06
190	10	2498.3	2779.2	16 5 58	.23138-03	19059-03 -54802-07
	1.1	3037.4	2727.3	82289-01	76886-04	* 0 + 5 O = "O 1
	12	4870.4			. •	
R3B-36	.3/389					
	4	.00000	.00000	62.641	21209	20207-02
	1	21.752	1241.4	50.545	34395	.84828-03
	2 3	163.52	3911.3	4.1693	.16814-01	14074-03
	.3 4	248.57	4301.0	3.9750	19099-01	.37703-04
	5	390.34	4588.1	.83298	30646-02	47997-05
	 E.	480.79	4634.8	.16074	43670-02	.49151-05
	د 7	799.04	4402.1	-1.1254	.32584-03	38249-05
	/ 8	1099.04	4083.1	-1.0333	18952-04	.26518-05
	5 9	1197.8	3983.7	95995	.76433-03	53501-05
	10	1501.9	3747.4	64349	.27613-03	51768-07
	11	3147.4	3205.7	15507	.20640-04	.76879-08
	12	4868.7				
	12	700017				

B-15 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(1,2)	C(1,3)
					. *****	
R4A-42	5/452					
	1	.00000	.00000	82.999	-2.6393	.12191
	2	5.6948	409.58	64.799	55657	.18347-02
	3	104.39	3147.3	8.5524	13338-01	58500-04
	4	203.08	3805.2	4.2102	30659-01	.71266-04
	5	298.36	3989.7	.30884	10288-01	.15207-04
	٤	383.40	3950.9	-1.1110	64090-02	.19248-04
	7	483.33	3795.1	-1.8153	63863-03	.24161-05
	8	893.57	3109.7	-1.1194	.23350-02	37119-05
	\$	1112.2	2937.8	63069	994/3-04	.51752-06
	10	1449.2	2733.8	52139	42378-03	26093-06
	11	1865.2	2571.4	30427	98131-04	13124-07
	12	4869.8			.,0101 04	.10124-07
R4B-391	./417					
	1	.00000	.00000	88.928	-1.5957	.27956-01
	2	11.652	863.76	63.129	61848	.21817-02
	3	109.83	3164.8	4.7761	.24108-01	30131-03
	4	168.73	3468.2	4.4798	29139-01	.50590-04
	5	368.24	3603.9	-1.1059	.11406-02	95324-05
	చ	461.33	3503.2	-1.1414	15215-02	.36719-05
	フ	671.55	3230.1	-1,2943	.79424-03	.20849-06
	8	1000.3	2897.9	70451	.99985-03	17381-05
	9	1110.6	2830.0	54738	.42471-03	25591-06
	10	1739.4	2590.1	31682	58091-04	.50530-04
	11	1859.8	2552.0	30883	.12443-03	11995-07
	12	4858.4		70.000		11995-07
R4B-449	/475					
	1	.00000	.00000	35.391	.00000	.00000
	2	8.9685	317.40	35.391	.00000	39764-02
	3:	26.944	930.47	31.537	21443	.58163-03
	4	138.07	2585.1	5.4261	20535-01	.27928-04
	5	249.19	2972.8	1.8969	11224-01	.13688-04
	٤	360.31	3063.8	90580-01	66604-02	.22257-04
	7	375.31	3061.0	27537	56579-02	.22800-04
	8	455.91	3014.0	74306	14506-03	40655-06
	9	679.79	2835.8	86914	41812-03	.12476-05
	10	1068.0	2508.4	62975	.10349-02	10500-05
	11	1391.5	2377.4	28989	.15747-04	.79055-07
	12	1981.3	2228.2	18881	.15563-03	41091-07
_	13	4859.1		. 10001	.10063-03	41091-0/
• •						

B-16 BRC 45-85

I	T(I)	Y(I)	C(I,1)	0(1,2)	0(1,3)
R5A-397/423					
1	.00000	.00000	16.918	.00000	.00000
2	110.89	1876.0	16.918	.00000	93813-02
3	114.21	1931.9	16.607	93504-01	.29217-03
4	212.16	2936.0	6.6991	76507-02	86564-05
5	310.11	3510.7	4.9512	10194-01	49847-04
Ē.	408.06	3851.0	1.5195	24842-01	.16619-03
7	446.77	3882.2	.34338	55440-02	.95094-05
ક	679.73	3781.5	69141	.11021-02	11134-05
9	1146.8	3585.1	39385	46502-03	.11855-05
10	1299.8	3518.2	45291	.78950-04	.60828-08
11	3443.3	2970.0	30595-01	.11804-03	19923-05
12	3533.8	2966.8	58221-01	42317-03	.35167-06
13	4803.2				
R5A-442/468	ing and the second				
i	.00000	00000	78.370	.00000	.00000
2	1.6003	125.41	78.370	.00000	10492-01
3	15.865	1212.9	71.965	44898	.10104-02
4	91.988	4535.0	21.173	21825	.10102-02
Ś	168.11	5327.7	5.5079	.12458-01	35658-03
<u>.</u>	244.24	5661.9	1.2058	68977-01	.34885-03
7	259.24	5665.7	62804	53281-01	.36435-03
ė	306.07	5556.8	-3.2212	20911-02	.59363-05
9	592.60	4601.8	-2.9574	.30118-02	15291-05
10	1075.5	3703.9	-1.1183	.79667-03	31169-06
11	1671.2	3254.5	50098	.23962-03	83824-07
12	2360.2	2995.7	-,29016	.66370-04	58859-08
1,3	4866.1				
R5A-504/530				•	
1	.00000	.00000	29.206	30807-01	24715-03
2	69.164	1790.9	21.398	82088-01	.12440-03
<u>.</u>	251.88	3719.0	3.8602	13896-01	54827-05
4	354.99	3963.3	.82000	15592-01	.10032-03
5	441.77	3982.6	.38050	.10527-01	18145-03
6	487.75	4004.7	.19638	14531-01	.52961-04
7	581.50	3939.1	-1.1318	.36343-03	23075-06 .51253-06
8	871.46	3635.8	97927	.16271-03	.51253-06 29334-06
9	1161.4	3378.0	75563	.60855-03	29334-06 16699-06
10	1568.7	3151.4	40591	.25013-03	19659-08
11	1810.9	3065.4	31413	.12878-03	T. 19830-07
12	4788.1				

B-17 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(I,2)	C(I,3)
R5B-341	/367					
	1	.00000	.00000	58.945	42116	.11989-02
	2	15.141	800.11	47.016	36670	.11987-02
	3	114.10	3023.4	9.6553	10817-01	86757-04
	4	169.22	3508.1	7.6725	25161-01	.41150-04
	5	311.97	4210.4	3.0045	-,75377-02	.28917-05
	٦.	461.25	4500.5	.94745	62427-02	.84935-05
	7	678.36	4498.9	56218	71073-03	.75571-06
	8	1141.6	4161.1	73417	.33744-03	12060-06
	9	1951.9	3724.9	42161	.46262-04	.17924-06
	10	2398.5	3561.8	27308	.28537-03	23566-06
	11	2850.8	3475.0	15888	33436-04	.54846-07
	12	4129.7				
R5B-398	/423					
	1	.00000	.00000	43.200	-,30251	.14862-02
	2	39.150	1316.8	26.347	12796	.26838-03
	3	157.50	3087.6	7.3371	32667-01	.54310-04
	4.	323.19	3653.5	.98497	56707-02	26013-05
	5	394.20	3693.9	.14026	62248-02	.45110-04
	&	429.74	3693.1	13127	14149-02	19269-05
	7	722.78	3581.6	46413	.27903-03	90364-07
	8	1229.1	3406.4	25106	.14176-03	34501-08
	9	1503.4	3341.1	25117	14214-03	.44013-06
	10	1749.6	3277.2	24114	.18287-03	31029-06
	11	1925.4	3238.8	20561	.19201-04	.24410-08
•	12	4789.5				
R7A-263	/289					
	1	.00000	.00000	29.412	37154	.34794-02
	2	9.7146	253.86	23.179	27014	.97247-03
	3	62.418	867 .4 7	2.8081	11638	.97137-03
	4	115.12	834.40	-1.3647	.37204-01	28158-03
	5	167.82	827.52	.37706	41551-02	.98896-05
	6	182.82	832.28	.25908	37100-02	.98488-05
	7	313.67	824.72	20593	.15615-03	56076-07
	9	677.14	767.81	11465	.95002-04	21198-07
	9	1293.0	728.29	21748-01	.55834-04	34070-06
	10	1404.1	726.09	21954-01	57690-04	.71333-07
	11	1838.4	711.52	31702-01	.35244-04	69745-08
	12	4863.1				

B-18 BRC 45-85

	İ	T(I)	Y(I)	C(I,1)	0(1,2)	C(1,3)
R7A-342	/368					
	1	.00000	.00000	68.058	.00000	.00000
	2	17.127	1165.7	48.058	.00000	29432-02
	3	53.131	3478.6	56.613	31789	. 63570-03
	4	107.63	5722.7	27.627	21396	.63232-03
	5	162.13	6695.2	9.9402	11057	.22214-03
	હ	216.63	6944.5	13272	74252-01	17615-03
	7	269.35	6705.3	-9.4310	10211	.46279-03
	é	389.82	4894.3	-13.885	.65144-01	14693-03
	9	524.84	3847.6	-4.3287	.56332-02	31676-05
	10	842.23	2939.9	-1.7101	.26171-02	24086-05
	11	1130.7	2606.6	80149	.53309-03	17855-08
	12	1715.5	2284.4	36116	.21982-03	45064-07
	13	4837.2				
R7B-241	1/267				A STATE OF THE STA	
		.00000	.00000	23.260	29513-01	17277-03
	1 2	93.963	1781.7	13.137	78215-01	.19375-03
	3	212.46	2562.5	2.7625	93363-02	.11723-04
	4	354.01	2799.7	.82410	-,43584-02	83465-06
	5	487.52	2830.1	39435	46928-02	.20790-04
	<u>ن</u> خ	544.61	2796.7	71689	11323-02	.22121-05
	7	773.79	2599.6	88734	.38859-03	.17427-06
	é	1167.7	2321.0	50009	.59452-03	98958-04
	9	1276.2	2272.5	40603	.27239-03	72596-07
	10	2277.7	2086.1	78867-01	.54268-04	16542-07
	11	3147.1	2027.7	22018-01	.11124-04	.35504-08
	12	4868.4				
RSA-16	4/190					
JUM 10	7,1,3			** /**/	23332-01	55589-02
	1	.00000	.00000	48.686	27753	.61840-03
	2	15.243	717.00	44.100	14857	.61886-03
	3	84.756	2649.2	14.480 2.7959	19515-01	.27625-04
	4	154.27	3145.7	.48322	13754-01	.32150-04
	5	223.78	3255.0	.92297-01	12307-01	.32202-04
	٤	238.78	3259.3	-1.4755	71839-04	.12319-05
	7	365.43	3139.0	-1.0686	.12284-02	62933-06
	ទ	717.24	2664.7	35321	.39767-03	20150-06
	9	1157.2	2378.7	10138	.76920-04	23756-07
	10	1687.9	2273.1	28192-01	26474-04	.33284-07
	11	3138.6	2215.4	20174 UI		
	12	4849.9				

B-19 BRC 45-85

						*
	I	T(I)	Y(I)	C(I,1)	C(1,2)	E(1,3)
R8A-432	2/458					
	1	.00000	.00000	108.82	.00000	.00000
	2	21.250	2312.4	108.82	.00000	22753
	3	22.453	2442.9	107.83	82121	.24921-02
	4	68.163	5893.9	48.374	47947	.25127-02
	5	113.87	7343.2	20.291	13490	72110-03
	٤	159.58	7920.0	3.4383	23378	.73523-03
	7	174.58	7921.4	-3.0789	20070	.72680-03
	8	305.31	5712.8	-18.291	.84331-01	17507-03
	9	449.64	4303.3	-4.8884	.85290-02	68764-05
	10	783.79	3365.6	-1.4918	.16357-02	87754-06
	11	1232.7	2946.1	55374	.45375-03	12958-08
	12	2605.4	2705.8	40532-01	79873-04	.22735-07
	13	4841.9				
R8B-333	3/359					
	1	.00000	.00000	117.60	-27.539	4.4957
	2	2.0145	161.90	61.380	36885	. 88 088-03
	3	105.98	3545.4	13.247	94098-01	.24073-03
	4	209.95	4177.1	1.4872	19011-01	.36928-04
	5	366.19	4086.2	-1.7490	17023-02	.97734-05
	٤.	444.59	3943.3	-1.8357	.59647-03	.20114-05
	7	618.10	3653.3	-1.4471	.16434-02	17469-05
	8	784.10	3450.3	-1.0459	.77347-03	29090-04
	9	1424.6	3021.3	41308	.21450-03	70041-07
	10	2259.9	2785.1	20134	.38983-04	.16100-07
	11	3148.3	. 2648.3	93956-01	.91992-04	33686-07
	12	4867.1				
R88-515	/541					
	1	.00000	.00000	56.429	32835	.88599-03
	2	8.6729	465.28	5 0.933	30530	.69982-03
	3	146.38	3517.1	6.6622	16195-01	11642-04
	4	195.95	3806.2	4.9707	17927-01	.19945-04
	5	472.98	4231.4	36977	13510-02	80291-05
	<u>6</u>	549.77	4191.5	71930	32008-02	.79988-05
	7	719.25	4016.5	-1.1150	.86610-03	16248-05
	S	861.57	3870.7	96719	.17241-03	.25828-06
	9	1315.5	3491.4	65103	.52411-03	66025-06
	10	1486.7	3391.9	52961	.19498-03	28112-07
	11	3180.8	2888.6	14531	.41991-04	10039-07

B-20 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(1,2)	C(I,3)
R3C-296/323					
1	.00000	.00000	51.827	.00000	.00000
2	10.517	545.09	51.827	.00000	22955-01
3	17.438	896.13	48.529	47655	.17840-02
4	102.89	2676.4	6.1649	19199-01	.29055-04
5	277.00	3321.2	2.1217	40226-02	.17248-05
6	610.61	3645.3	.13639-01	22964-02	.96069-05
5 7	715.49	3632.6	15105	.72614-03	61095-05
•	932.58	3615.0	23231	14201-02	25580-04
8	920.64	3546.1	-1.0775	81775-02	.14142-02
9	. —	3553.9	59158	.46135-01	79690-03
10	933.45	3555.0	.26563	88925-02	.33008-04
11	956.46	3511.4	36344	.40969-02	32456-04
12	1087.6	3311.4	50544	• • • • • • • • • • • • • • • • • • • •	
13	1230.6				
RBC-380/407					
		****	34.885	. 00000	.00000
1	.00000	.00000	34.885	.00000	23608-02
2	1.8868	65.822	28.614	21074	.51778-03
_ 3	31.643	1041.7		10295	.51891-03
4	101.04	2185.5	6.8460 54104-01	.50774-02	98485-04
, 5	170.43	2338.2	.54126-01	15425-01	.79114-04
ఈ	239.82	2333.5	66397	.44236-02	- 26374-04
フ	323.46	2216.4	-1.5841	.34939-03	15962-05
8	374.95	2143.0	-1.3383	.16335-02	23484-05
9	643.13	1840.0	80649	.43063-02	12290-06
10	813.87	1738.2	45406	23702-03	.77248-06
11	2624.7	1598.3	10345		10957-06
12	2835.3	1573.2	10050	.25103-03	10%0/~00
13	4875.5				
R3D-219/246					
	****	00000	39.495	.00000	.00000
1	.00000	.00000	39.695	.00000	44569-01
2	8.2436	327.23	39.299	23015	.51320-03
3	9.9649	395.33	5,2318	22796-01	.32323-04
4	144.65	2767.2		10257-02	2585&-05
5	369.16	3158.5	11651 63680	22556-02	76078-05
د.	527.72	3103.9		33501-02	.42343-04
7	575.66	3067.4	90554	.58620-03	10573-06
8	606.65	3037.4	99118	.42747-03	65997-06
9	1107.0	2674.9	48393 *8667	.23727-03	68784-07
10	1203.1	2631.8	42007	.17742-04	.28247-06
11	2257.0	2370.6	14878		48149-07
12	2429.0	2348.2	12079	.15503-03	=:46147.007
13	4875.5				

B-21 BRC 45-85

I	T(I)	Y(I)	0(1,1)	C(I,2)	C(1,3)
R3D-287/314					
i	.00000	.00000	41.185	.00000	.00000
2	5.9434	244.78	41.185	.00000	49241-02
3	19.281	782.41	38 .55 8	19703	.38338-03
4	177.72	3470.3	4.9954	14798-01	.19878-04
5	349.67	3992.8	1.6697	45443-02	.41849-05
6	594.95	4190.7	.19573	14648-02	25142-06
7	715.08	4192.6	16710	15555-02	.54699-05
8	817.41	4165.1	31361	.12369-03	983 4 6-06
\$1	1087.3	4070.1	46182	67273-03	.24256-05
10	1236.4	3994.3	50067	.41214-03	21333-05
11	1353.3	3938.0	49177	33600-03	.10484-05
12	1499.6	3862.2	52277	.12406-03	93601-08
13	4882.7				
R50-219/246					
1	.00000	.00000	31.177	.00000	.00000
2	14.025	437.26	31.177	.00000	20926-02
3	37.852	1151.8	27.613	14958	.34479-03
4	159.35	2917.1	6.5 349	23904-01	.37961-04
5	294.95	3458.3	2.1461	84620-02	.11686-04
ර	436.36	3625.7	.45395	35044-02	10548-04
7	487.37	3638.3	.13898-01	51218-02	.12967-04
8	604.5 3	3589.2	65438	48&5&-03	.98411-06
•	900.20	3380.0	68554	.38046-03	27935-06
10	1425.6	3084.3	51710	59873-04	.10191-05
11	1751.8	2944.6	23097	.93721-03	+.30815-05
12	1866.2	2925.8	13752 ·	12041-03	.40598-07
13	4726.3				
R50-282/309					
1	.00000	.00000	37.118	.00000	.00000
2	.66436-01	2.4659	37.118	.00000	34947-02
3	20.017	715.22	32.945	20916	.51131-03
4	156.84	2616.9	4.4247	.71159-03	67793-04
5	238.93	2947.4	3.1710	15984-01	.38346-04
<u>6</u> .	342.91	3148.0	1.1069	38&&0-02	.18155-05
7	460.48	3227.6	.27320	32257-02	.32488-05
3	670.98	3172.5	65295	11740-02	.67485-05
. 9	743.62	3121.5	71668	.29665-03	10430-06
10	1359.1	2768.5	47004	.10408-03	.18270-06
11	1770.1	2605.5	29188	.32936-03	17641-06
12	2485.4	2500.7	91478-01	49198-04	.30818-07
13	4882.3				

B-22 BRC 45-85

				•		
	I	T(I)	Y(I)	C(I,1)	0(1,2)	0(1.3)
R5D-225	/252					
			.00000	48.599	.00000	.00000
	1	.00000		48.599	.00000	83347-02
	2	6.2090	301.75	45.130	29451	.79044-03
	3	17.988	860.55	e.5838	86324-02	77047-04
	4	138.54	3405.8	6.3668	24227-01	.42497-04
	5	206.01	3922.0	2.1047	66011-02	34976-06
	6.	344.27	4451.5		67095-02	.94104-05
	7 -	447.62	4598.1	.72904	41190-03	.38311-06
	8	670.69	4531.3	85956	.14474-03	.40587-06
	9	1155.0	4061.9	98895	.64952-03	47077-06
	10	1569.6	370 5. 7	65968	37369-03	.46339-06
	11	2294.1	3389.7	45984	.40792-03	11604-06
	12	2856.3	3095.4	44060	.40/92-03	.11004 00
	13	4887.1				
R5D+294	1/321					
		****	.00000	57.875	-3.2210	.75829
	1_	.00000	•	53.371	35716	.97401-03
	2	1.2589	69.268 2898.1	10.279	40535-01	.73863-04
	3	109.61		3.3261	10121-01	.96656-05
	4	246.87	3736.2	.61615	48843-02	.61405-05
*	5	427.46	4063.7	48706	18797-02	.39145-05
	. <u>6</u>	590.56	4060.9		18917-03	34075-06
	7	734.52	3963.6	78489 87530	35805-03	12229-05
	8	899.73	3827.2		.57096-03	33720-06
	9	1153.0	3602.4	82139	10108-03	.20613-06
	10	1817.3	3209.9	50923 33278	.34545-03	- 12292-04
	, 11	2539.4	2867.1	332/5	* Curran An	
	12	4884.5				
R6A-56	2/589					
		00000	.00000	41.124	.00000	.00000
	1	.00000	138.87	41.124	.00000	15705
	2	3.3770	164.56	40.939	29470	.80127-03
	3	4.0024	2214.8	4.8370	79465-02	73314-04
	4	123.29	2416.7	3.6057	18269-01	.48043-04
	5	170.23		1.5137	58888-02	.67299-05
	٤.	257.67	2624.5	75064-01	.18197-03	31448-05
	. 7	547.35	2751.1	35043	16221-02	.78564-05
	, 8	738.54	2721.4	45835	.29586-03	12598-06
	9	819.93	2636.4	45835 28917	15360-03	.80-0866
	10	2009.2	2347.9	25917 55963-01	.68491-03	12277-05
	11	2448.1	2245.2	50286-01	27890-03	.13274-06
	1.2	2709.8	2255.5	.50205701		• = = · · · · · ·
	13	4883.2				

I	T(I)	Y(I)	C(I,1)	C(1,2)	C(1,3)
			**		
R6C-529/556					
1	.00000	.00000	130.60	-30.677	6.1511
2	1.6161	156.90	79.642	85444	.34125-02
3	8 3.480	2822.7	8.35 50	16355-01	.15118-04
4	315.21	4068.7	3.2103	58456-02	.15378-06
5	368.27	4222.6	2.5913	58210-02	.45930-05
6	755.55	4619.9	.14928	48486-03	13462-04
7	790.19	4623.9	.67221-01	19840-02	.25923-05
8	983.37	4585.3	37048	38177-03	23110-05
9	2089.3	4021.2	36693	.38498-03	77988-06
10	2439.5	3906.4	38418	43425-03	.12723-05
11	2609.6	3834.8	42146	.21511-03	56545-07
12	4884.5	•			
R8C-378/405					
1	.00000	.00000	95.787	37472	.71710-02
2	11.385	1052.6	90.043	12978	10839-02
3	78.585	6188.5	57.916	34829	.87791-03
4	145.79	8774.0	23.000	17130	.41815-03
5	198.50	9571.6	8.4259	10518	.36690-04
٤	309.12	9266.2	-13.498	93003-01	.49100-03
7	427.60	7178.1	-14.859	.81516-01	31114-03
ខ	500.52	6407.4	-7.9344	.13454-01	10454-04
9	869.18	4787.0	-2.2767	.18922-02	12298-05
10	990.42	4536.6	-1.8721	.14449-02	60372-06
11	1771.0	3668.5	71999	.31083-04	.32674-07
12	4879.3			.01000 04	.02074*07
R8C-476/503	•				
1	.00000	.00000	23.886	.00000	.00000
2	19.802	473.00	23.886	.00000	17390-01
3	23.344	556.82	23.231	18478	.55046-03
4	77.897	1363.6	7.9857	94688-01	.55136-03
5	132.45	1607.0	2.5773	44524-02	12165-03
٤	187.00	1714.6	1.0054	24361-01	.13900-03
7	240.15	1719.9	41461	23592-02	.36836-05
8	552.69	1472.4	80986	.10946-02	11385-04
9	615.13	1423.3	80633	10381-02	.45649-05
10	823.63	1251.4	64386	.18173-02	30245-05
11	1003.1	1176.9	28383	.18901-03	56532-07
12	1840.9	1038.5	86169-01	.46919-04	60628-08

B-24 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(I,2)	C(I,3)
RSD-44	6/473					
	1	.00000	.00000	47.292	24544	66712-03
	ż	15.656	677.67	39.117	27677	.71067-03
	3	74.202	2161.8	14.017	15195	.71174-03
	4	132.75	2604.4	3.5434	26938-01	.26220-04
	5	191.30	2724.8	.65882	22333-01	.17313-03
	٤	221.30	2729.1	21369	67510-02	.12073-04
	7	435.24	2492.6	-1.4446	.99780-03	50553-07
	É	1013.0	1981.3	34215	.91017-03	34175-05
	9	1130.9	1940.0	27003	-,29325-03	.61184-06
	10	1419.4	1860.0	28934	.23129-03	15468-06
	11	1813.5	1772.4	17911	.48394-04	16699-07
	12	4302.7				
R8D-53	4/561					
	•	.00000	.00000	39.234	.00000	.00000
	1 2	25.189	988.28	39.234	.00000	14224-01
	3	23.189 31. 8 39	1245.0	37.347	28374	.77433-03
	4	84.814	2542.3	13.805	16068	.77832-03
	5	137.79	2938.4	3.3336	36981-01	.11325-03
	<u>.</u>	190.76	3028.1	.36893	18982-01	.58880-04
	7	302.47	2914.5	-1.6678	.74990-03	.10441-05
	é	497.59	2625.4	-1.2559	.13611-02	10760-05
	9	755.65	2373.4	76842	.52805-03	17597-06
	10	1201.0	2120.4	40278	.29293-03	51253-07
	11	1601.7	2002.7	19271	.23132-03	43691-06
	12	1813.8	1968.1	15355	46669-04	.16972-07
	13	4881.8				
RPA-34	1/348					
	1	.00000	.00000	81.076	-5.2227	. 45585
	2	3.4471	236.09	61.320	50363	.14154-02
	3	139.06	2727.9	1.4594	.67223-01	57805-03
	4	187.88	2892.1	3.8899	17439-01	.39748-04
	5	323.49	3198.0	1.3529	12684-02	15182-04
	Š	428.29	3308.4	.58682	60413-02	.12070-04
	7	552.97	3311.0	35673	15266-02	.18426-05
	ė	845.94	3106.3	77084	.20359-03	.16156-06
	9	1449.8	2757.8	- .36786	.48659-03	76341-06
	10.	1746.9	2671.4	28086	19370-03	.57667-06
	11	2005.3	2595.9	26546	.25332-03	78571-07
	12	4603.3				

B-25 BRC 45-85

1	T(I)	Y(I)	C(1,1)	C(1,2)	C(1.3)

R9B-385/412					
1	.00000	.00000	47.696	.00000	.00000
2	29,801	1421.4	47.696	.00000	35397-01
3	34.937	1661.5	44.895	54539	.21694-02
4	126.00	2865.3	46592	.47244-01	34394-03
5	161.00	2892.2	1.5773	.11124-01	35814-04
٤	344.59	3335.1	2.0405	86012-02	.39747-04
7	391. <i>9</i> 5	3416.6	1.4932	29541-02	.11488-05
8	822.14	3603.8	41063	14722-02	.24884-04
9	839.55	3596.3	43926	17308-03	.47125-06
10	1286.5	3407.5	31161	.45873-03	77797-04
11	1311.5	3398.8	43446	53746-02	.65651-04
12	1339.9	3383 . 6	58085	.23042-03	.12281-06
13	1858.3				
R90-426/453					
		,		4 to 100 to	
i	.00000	.00000	56.033	.00000	.00000
2	4.6210	258.93	56.033	.00000	22735-01
3	10.880	604.06	53.361	42690	.11918-02
4	139.63	2941.4	2.7046	.33440-01	23051-03
5	216.87	3243.7	3.7444	19980-01	.52270-04
ج.	314.72	3467.7	1.3357	46367-02	.71451-06
7	415.12	3555.8	42632	44215-02	.49154-05
8	631.55	3490.8	79681	12300-02	.32127-05
9	858.40	3284.1	85847	.95841-03	24070-05
10	967.68	3198.7	735 30	.17079-03	.28281-06
11	1373.4	2947.4	45710	.51498-03	78032-06
12	1502.4	2895.3	36317	.21291-03	37334-07
13	4502.4		•		
R9D-181/208					
1	.00000	.00000	313.95	-63.984	5.0445
2	4.2060	563.90	43.438	33058	.10033-02
3	105.74	2616.4	7.3354	24988-01	.27891-05
4	199.15	3085.9	2.7400	24207-01	.90024-04
5	246.28	3170.7	1.0582	11478-01	.21545-04
6	365.13	3170.4	75727	37961-02	.73589-05
7	670.88	2794.4	-1.0148	.29538-02	84627-05
8	755.43	2724.6	69682	.80731-03	32810-06
9	1779.0	2505.3	75371-01	20017-03	.46670-06
10	2212.4	2473.0	.14135-01	.40668-03	42282-05
11	2766.6	2533.8	.75315-01	29629-03	.19495-06
12	4404.2				

B-26 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(1,2)	0(1.3)
			<u>-</u>			
R10A-3	51/378					
	1	.00000	.00000	67.673	-4.1409	. 47697
	2	2.6651	159.97	55.764	32742	.70148-03
	ź	152.98	3526.8	4.8816	11085-01	.98416-05
	4	491.92	4291.1	.75912	10781-02	30481-05
	5	724.10	4371.1	23451	32014-02	. 26570-04
	٤	799.89	4346.5	26192	.28396-02	10291-04
	7	949.04	4336.4	10163	17648-02	.32255-05
	Ś.	1122.6	4282.5	42274	85164-04	.99780-07
	9. 9	1986.3	3918.1	34655	.17338-03	15054-06
		2697.5	3705.2	32851	14802-03	.23703-06
	10	3172.4	3541.2	30872	.18969-03	93351-07
	. 11		J-11.2	.00072		
	12	4925.1				
R10B-3	351/378					
		22222	.00000	82.678	-10.123	1.1429
	1	.00000	180.35	52.821	31979	.74528-03
	2	2.8592 130.49	3262.1	7.6107	34426-01	.64158-04
	3		3806.1	1.9583	98602-02	.15882-04
	4	258.13	3928.8	.17580	36705-02	.76778-05
	5	389.86	3891.7	40791	.16611-03	26569-05
	<u>&</u>	556.43	3788.0	69267	15157-02	.63524-05
	7	767.43	3663.1	48390	.15699-02	26929-05
	9	929.34	3553.7	39294	-,33775-03	.66661-06
	9	1165.5	3416.2	40572	.29754-03	12808-04
	10	1483.2	3203.1	17921	38767-04	.37964-07
	11	2358.4	3203.1	1//21		
	12	4882.6			•	
R100-	316/343	=				
	1.	.00000	.00000	43.436	89245	.84128-01
		2.6540	110.57	40.476	22261	.48888-03
	2 3	124.87	2624.8	7.9706	43369-01	.86362-04
	4	281.51	3141.1	.74090	27834-02	12174-04
	5	411.77	3163.5	60382	75405-02	.63033-04
		457.30	3126.3	89848	.10693-02	55723-05
	ら フ	526.12	3067.7	83046	81287-04	.41342-06
		1065.6	2661.0	55719	.58784-03	64139-06
	8	1163.4	2611.5	46063	.39970-03	24058-06
	9	1806.3	2416.6	24501	64324-04	.15597-06
	10	2471.9	2271.1	12336	.24711-03	93598-07
	11	4885.2	22/101			
	12	4550.2				

B-27 BRC 45-85

	1	T(I)	Y(I)	C(I,1)	C(1,2)	C(1,3)
R10D-32	25/352					
	1	.00000	.00000	42.859	.00000	.00000
	2	25.188	1079.5	42.859	.00000	22273-01
	3	28.878	1236.6	41.949	24655	.64332-03
	4	109.81	3357.7	14.683	90351-01	.24881-03
	5	190.74	4086.1	4.9472	29941-01	.55188-04
	٤	307.67	4343.5	.20910	10583-01	.30338-04
	7	361.65	4328.7	66824	56695-02	.16234-04
	. 8	451.61	4234.5	-1.2942	12886-02	.34989-05
	9	716.26	3886 .6	-1.2410	.148/4-02	22098-05
	10	864.83	3707.9	94478	. 5 0451-03	26784-06
	11	1361.6	3330.2	64183	.10528-03	.38678-07
	12	2111.6	2924.4	41865	.19230-03	32511-07
	10	4070 0				

B-28 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(I.2)	C(1,3)
-						
R1C-065/0	92					
	1.	.00000	.00000	297.04	-160.77	50.473
	2	1.0561	193.84	126.35	86019	.22106-02
	3	55.909	4901.0	51.933	49642	.22211-02
	4	110.76	6622.E	17.521	13091	.21874-04
	5	165.62	7193.4	3.3570	12731	.39038-03
	٤	180.62	7216.5	19884	10974	.38564-03
	7	288.34	6403.7	-10.417	.14984-01	62164-05 10381-04
	8	451.53	5073.0	-6.0560	.11840-01 .11406-02	34038-04
	9	795.08	3969.0	-1.5964		73334-07
	10	1747.2	3189.2	35017	.16827-03 37991-04	.36828-07
	11	2684.8	2948.4	22803	3/991-04	. 30020-07
	12	4880.4				
R1D-071/0	098					
	1	.00000	.00000	146.24	-1541.8	17753.
	2	.28940-01	3.3710	101.60	47240	.82894-03
	ŝ	67.136	4944.6	49.397	30552	.82606-03
	4	134.24	7133.3	19.553	13922	.48847-05
	5	201.35	7820.0	.93394	13823	.37836-03
	6	216.35	7804.1	-2.9577	12121	.37076-03
	7	367.44	5869.1	-14.193	.46847-01	60043-04
	ė	606.35	4333.4	-2.0900	.38112-02	61689-05
	9	799.11	4028.0	-1.3083	.24384-03	.60214-06
	10	1290.5	3515.4	63255	.11315-02	88733-06
	11	1830.3	3364.1	18671	30559-03	.92701-07
	12	4881.2				
R30-128/	155	p.				
	1	.00000	.00000	57.441	.00000	.00000
	2	16.898	970.62	57.441	.00000	95230-02
	3	28.200	1606.1	53.791	32289	.77521-03
	4	144.42	4713.3	10.152	52602-01	.94548-04
•	5	290.66	5 368.6	.83259	11123-01	.18527-04
	6	464.13	5275.0	-1.3540	14813-02	61926-05
	7	595.04	5058.5	-2.0602	39132-02	.22514-04
	ខ	754.28	4722.1	-1.5938	.68423-02	12387-04
	9	984.14	4566.9	41170	16997-02	.35541-05
	10	1232.1	4414,5	59912	.94378-03	98292-08
	11	1480.4	4308.8	31222	.21143-03	19843+05
	12	1780.6	4228.8	23893	.32769-04	.19977-08
	1.3	4876.0				

B-29 BRC 45-85

STRAIN RATE = (10E-5)/SECTEMPERATURE = -20° C

B-31 BRC 45-85

					*
1	T(I)	Y(I)	C(I,1)	C(1,2)	C(1.3)
R1C-065/092	!				
1		.00000	297.04	-160.77	50.473
2	1.0561	193.84	126.35	86019	.22106-02
3	55.909	4901.0	51.933	49642	.22211-02
4	110.76	6622.6	17.521	13091	.21874-04
5	165.62	7193.4	3.3570	12731	.3 9038-03
6	180.62	7216.5	19884	10974	.38584-03
	288.34	6403.7	-10.417	.14884-01	62164-05
9		5073.0	-6.0560	.11840-01	10381-04
ç	795.08	3969.0	-1.5964	.11406-02	34038-06
10	1747.2	3189.2	35017	.16927-03	73334-07
1 1	2684.8	2948.4	22803	37991-04	.36928-07
12	4880.4				
R1D-071/098	?				
1		.00000	146.24	-1541.8	17753.
. 2		3.3710	101.60	47240	.82894-03
3	67.136	4944.6	49.397	30552	.82606-03
4		7133.3	19.553	13922	.48847-05
5	201.35	7820. 0	.93394	13823	.37836-03
	216.35	7804.1	-2.9577	12121	.37076-03
7	367.44	5869.1	-14.193	.46847-01	60043-04
٤	606.35	4333.4	-2.0900	.38112-02	61689-05
9	799.11	4028.0	-1.3083	.24384-03	.60214-06
10	1290.5	3515.4	63255	.11315-02	88733-06
11	1830.3	3364.1	18671	30559-03	.92701-07
. 12	4381.2				
R30-128/1 55	1	· •			
	.00000	.00000	57.441	.00000	.00000
2		970.62	57.441	.00000	95230-02
3		1606.1	53.791	32289	.77521-03
4		4713.3	10.152	52602-01	.94548-04
=		5368.6	.83259	11123-01	.18527-04
Ě		5275.0	-1.3540	14813-02	61926-05
7		5058.5	-1.3540 -2.0602	39132-02	.22514-04
, . E		4722.1	-1.5933	.68423-02	12387-04
9		4566.9	41170	16997-02	.35541-05
10	, , , , , ,	4414.5	59912	.94378-03	98292-06
11		4308.8	31222	.21143-03	19848-06
12		4228.8	23893	.32769-04	.19977-08
13		7220.0	- 43073	. 32/07-04	• 177777-08
1.5	-3/0.0				

B-32 BRC 45-85

	I	T(I)	Y(I)	C(1,1)	C(I,2)	0(1,3)
	· 			and with the star first that		
R3D-129/15	is					
	1	.00000	.00000	49.203	.00000	.00000
	Ž	12.811	630.32	49.203	.00000	68524-02
	3	28.506	1376.1	44.139	32266	.84789-03
	4	88.839	3050.8	14.464	16919	.84580-03
	5	149.17	3493.3	3.2844	16102-01	14108-04
	6	209.51	3629.8	1.1874	18655-01	.45031-04
	7	342.36	3543.9	-1.3851	70750+03	.52020-05
	é	496.65	3352.4	-1.2319	.17003-02	94607-06
	·	716.37	3153.8	62176	.10767-02	74 269-06
1	.ó	1193.7	3021.6	10156	.13140-04	.21091-07
_	1	2519.7	2959.2	.44545-01	.97041-04	58817-07
-	. 2	3836.3	3051.8	57767-02	13526-03	.20616-06
_	.3	4873.3				
R50-097/12	4					
	4	.00000	.00000	38.378	.00000	.00000
	1	35.581	1345.5	38.378	.00000	14120-01
	2 3	40.121	1538.5	37.505	19231	.38058-03
	ت 4	151.94	3859.7	8.7718	64646-01	.19273-03
	5	151.74 255.29	4288.6	1.5853	48936-02	27460-04
		326.51	4356.7	.47032	10761-01	.33054-04
	<u>6</u>	328.51 393.92	4359.6	52989	40754-02	.54915-05
·	7 S	373.94 &&9.09	4019.7	-1.5254	.45766-03	.21213-05
	ନ ନ	895.86	3722.0	99053	.19008-02	36814-05
	•	1012.5	3424.5	69741	.61273-03	-,25802-04
	10	2001.6	3286.5	24258	15288-03	.54689-06
	11	2442.3	3194.7	58656-01	.57020-03	71034-04
	12 13	3675.8	3170.7	100000	,,,,,	
R5B-121/14	4:3				•	
		****	.00000	104.57	-11.019	3.6075
	1	.00000		95.416	82347	.30527-02
	2	.94207	93.636	73.416 23.982	15455	.37093-03
	3	73.982	3859.3 *880 8	7.3410	73276-01	.24497-03
	4	147.02	4930.9		19597-01	.22963-04
	5	220.06	5171.7	.55754 -2.1502	14054-01	.72416-04
	6	300.52	5101.6	-2.1502 -3.0331	.23901-02	53373-06
	7	376.22	4889.7	-3.0331 -1.2583	.16943-02	10857-05
	8	810.76	3979.2	-1.2583 38685	17767-03	.14526-05
	9	1385.5	3509.6	38885	.37213-03	15590-06
	10	1511.6	3560.9	38212 1095&	.14267-03	39337-07
	11	2002.2	3454.4	10%50	114267-03	e was ware and
	12	4882.9				

B-33 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(1,2)	0(1,3)
R6A-461/488					
1	.00000	.00000	56.115	.00000	.00000
2	2.0723	116.29	56.115	.00000	67922-02
3	18.281	996.90	50.762	33027	.86216-03
4	79.321	3060.9	20.080	17239	.86302-03
5	115.94	3607.5	10.925	77569-01	.19442-03
خ	230.71	4133.5	.80291	10634-01	.25459-04
7	274.66	4150.5	.15647-01	72764-02	.10455-04
8	535.71	3844.7	-1.6459	.91164-03	.81429-08
9	1025.2	3258.4	74750	.92360-03	.83572-06
10	1418.0	3056.6	40875	61145-04	.76279-06
11	1605.2	2983.0	35145	.36722-03	16098-08
12	2295.3	2862.4	74608-01	.33939-04	92454-08
13	4651.3				
R8C-165/192					
1	.00000	.00000	71.337	.00000	.00000
2	23.744	1693.8	71.337	.00000	53377-01
. 3	26.823	1911.9	69 . 818	49311	.15226-02
4	111.91	5220.6	18.974	10442	.22936-03
5	197.00	6220.4	6.1863	45870-01	.11941-03
€.	294.14	6497.9	.65501	11072-01	18355-04
7	395.84	6430.7	-2.1668	16675-01	.15076-03
8	434.06	6332.0	-2.7807	.61388-03	.73403-06
9	1002.0	5085.2	-1.3732	.18645-02	22675-05
10	1361.9	4726.7	91235	58401-03	.70951-05
11	1467.6	4632.2	79812	.16651-02	25766-05
12	1663.0	4520.6	44252	.15443-03	19652-07
13	4977.0			•	
R8D-192/219					
1	.00000	.00000	114.24	.00000	.00000
2	5.0929	581.79	114.24	.00000	74215-01
3	9.7494	1106.2	109.41	-1.0367	.38947-02
4	79.743	5021.2	21.550	21850	.91596-03
5	149.74	5773.2	4.4249	26165-01	.10784-04
٤	191.73	5913.7	2.2843	24806-01	.37111-04
7	374.27	5729.8	-3.0623	44833-02	.16832-04
8	561.09	5111.0	-2.9750	.49505-02	45018-05
9	869.82	. 45 31.9	-1.2055	.78102-03	.35220-07
10	1532.0	4086.4	12484	.85 098-03	12854-05
11	1879.7	4091.8	.68011-03	49004-03	.19837-06
12	3152.7	3708.8	28019	.26940-03	75344-07
13	4831.0				

B-34 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(1,2)	C(1,3)
R9A-125/152					
· 1	.00000	.00000	70.902	.00000	.00000
2	2.1816	154.68	70.902	.00000	65253-02
3	25.635	1733.4	60.134	45912	.11650-02
. 4	166.88	4350.5	. 16701	.34559-01	19991-03
5	251.63	4491.2	1.7171	16268-01	.57454-04
6	358.98	4559.2	.21075	.22349-02	18093-04
. 7	486.02	4584.9	97469-01	46610-02	.13513-04
8	617.69	4522.1	62208	.67666-03	31516-06
9	915.57	4398.5	30284	.39504-03	28322-0
10	1213.5	4325.9	14288	.14196-03	13858-07
11	1990.1	4294.0	.52534-01	.10967-03	12732-06
12	2422.2	4326.9	.75993-01	55384-04	.25390-07
13	4882.7				
R98-043/070					
		00000	121.42	-3.5765	.80941-01
1	.00000	.00000	70.471	64744	.20131-02
2	12.062	1086.3 3716.0	3.3487	.11753	13314-02
3	138.73	3716.0	5.7615	64614-01	.29038-03
4	184.33	4172.5	.98872	41469-02	.57982-05
5	253.74	4239.3	.28003	22067-02	.16372-05
<u>6</u>	365.28 859.55	4237.3 4036.3	70143	.22104-03	.28498-05
7 8	973.26	39 6 3.6	54063	.11932-02	27828-05
୍ର ତ	1066.4	3921.3	39081	.41584-03	13675-06
·	2471.9	3721.3 3813.8	32298-01	16077-03	.19879-06
10 11	3026.5	3780.4	27188-01	16998-03	90209-07
r2	4885.4	3700.4			
R10A-195/222					
			•		
1	.00000	.00000	50.252	.00000	.00000
2	.99259	49.879	50.252	.00000	47315-02
3	20.878	1011.9	44.639	28226	.74575-03
4	113.63	3319.1	11.525	74747-01	.16641-03
5	206.38	3877.8	1.9542	28441-01	.13874-03
€.	262.04	3922.4	.77630-01	52777-02	.18730-05
7	353.04	3887.2	83641	47664-02	.18844-04
8	449.48	3779.1	-1.2300	.68549-03	11861-06
9	1238.8	3177.0	36949	.40462-03	48576-06
10	1600.5	3073.3	26743	12248-03	.28961-06
11	2003.4	2964.6	22512	.22752-03	16281-06
12	2509.0	2837.9	11990	1945&-04	.12792-07
13	4 969.7				

B-35 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(I,2)	0(1.3)
						-
R10D-15	7/184					
	. 1	.00000	.00000	61.981	-8.4960	6.2220
	2	.43843	26.066	58.120	31227	.64479-03
	3	144.05	3842.1	8.3235	34483-01	.56109-04
	4	308.33	4527.7	1.5366	68277-02	.17111-04
	5	339.35	4569.3	1.1624	52343-02	.42932-05
	£.	584.47	4602.9	62976	20772-02	.56634-05
	フ	769.29	4451.3	81720	.10630-02	21819-05
	8	954.12	4322.8	64786	14678-03	.44560-06
	9	1465.5	4012.7	44839	.53683-03	15104-05
	10	1525.7	3964.0	38481	77993-05	.19964-06
	11	1875.1	3856.8	33916	.16552-03	35825-07
	12	4600.3				
R1C-210	/236					
	1	.00000	.00000	51.234	.00000	.00000
	2	.36721	13.814	51.234	.00000	26916-02
	3	25.741	1274.8	46.036	20489	.31784-03
	4	96.101	3610.3	21.924	13780	.31777-03
	5	166.46	4581.4	7.2530	70722-01	.23560-03
	6	236.82	4823.7	.80003	20991-01	.41228-04
	フ	324.28	4760.7	-1.925&	10174-01	.35323-04
•	8	432.96	4476.6	-2.8855	.13425-02	.10389-05
	9	726.96	3770.7	-1.8267	.22588-02	16363-05
	10	1076.3	3338.4	84755	.54376-03	.18820-07
	11	1425.7	3109.5	46071	.56349-03	43136-06
	12 *	1849.0	2982.7	21554	.15732-04	.58451-08
	13	4844.1		•		
R10-240	/266					
	1	.00000	.00000	290.49	-31.192	2.0411
	2	4.8999	914.59	131.83	-1.1882	.33709-02
	3	74.877	5476.0	15.050	48057	.33740-02
	4	144.85	5332.0	-2.6441	.22772	17933-02
	5	214.83	5647.6	2.8828	14874	.14021-02
	6	229.83	5662.1	63299	85647-01	.12365-02
	7	253.00	5616.8	-2.6104	.30051-03	.11987-05
	8	649.49	4703.8	-1.8068	.17263-02	10600-05
	9	922.01	4318.2	-1.1020	.85 967-03	33441-06
	10	1661.1	3 8 38.3	37932	.11824-03	20706-07
	11	2447.0	3603.1	23182	.69418-04	15197-07
	12	4894.7				

B-36 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(1,2)	C(I,3)
						·
R1D-201	9/236					
	1	.00000	.00000	79.553	.00000	.00000
	2	12.701	1010.4	79.553	.00000	89328-01
	3	14.145	1125.0	78.994	38680	. 6747 0-03
	4	76.145	4696.5	38.811	26131	.67558-03
	5	138.14	6259.4	14.199	13565	.34632-03
	6	259.77	6602.S	-3.4290	92842-02	77795-04
	.7	322.82	6330.2	-5.5271	23997-01	.15425-03
	8	400.76	5824.7	-6.4566	.12073-01	10641-04
	9	721.95	4645.7	-1.9949	.18189-02	75291-06
	10	1370.1	3911.8	58800	.35482-03	16827-06
	11	2426.9	3490.2	39982	17864-03	.23967-06
	12	3170.9	3192.5	26760	.35634-03	20484-06
	13	4781.3				
R1D-315	5/342					
	. 1	.00000	.00000	65.410	-1.7213	.49123-01
	2	9.5631	511.04	45.966	31200	.71749-03
	3	84.316	2503.4	11.348	15110	.71681-03
	4	159.07	2806.7	.77445	.96565-02	99734-04
	5.	233.82	2874.9	.54620	12711-01	.29197-04
	હ	248.82	2882.4	.18457	11399-01	.29677-04
	7	374.91	2783.9	-1.2745	17305-03	.11237-05
	8	725.15	2364.6	98215	.10077-02	63083-06
	9	1075.4	2117.1	50846	.34483-03	15114-06
	10	1425.6	1974.8	32253	.18602-03	42619-07
	1 1	3182.3	1751.3	63533-01	38587-04	.17327-07
	12	4955.8				
R30-32	9/359					
	1	.00000	.00000	59.199	.00000	.00000
	Ž	29.853	1767.3	59.199	.00000	28178
	3	30.329	1795.4	59.008	40204	.10469-02
	4	121.95	4632.1	11.702	11427	.44920-03
	5	213.58	5090.5	2.0749	.91993-02	16686-03
	٤	246.56	5163.0	2.1371	73124-02	. 63891-05
	7	423.14	5347.5	.15233	39279-02	.33317-05
	ė	651.02	5217.7	-1.1188	16502-02	.40377-05
	9	840.83	4973.5	-1.3089	.64890- 03	23274-06
	10	1560.8	4280.7	73645	.14620-03	.30342-05
	11	1664.4	4209.3	60938	.10896-02	26567-05
	12	1775.8	4151.4	46452	.20145-03	35050-07
	13	4192.2				

B-37 BRC 45-85

1	T(I)	Y(I)	C(I,1)	C(1,2)	C(1.3)
R3C-411/438					
1	.00000	.00000	30.254	.00000	.00000
2	12.832	388.21	30.254	.00000	37525-02
3	31.772	935.73	26.216	21322	.60787-03
4	91.013	1866.8	7.3525	10519	.60696-03
5	150.25	2059.4	1.2799	.26816-02	10692-03
£.	209.50	2122.4	.47183	16321-01	.14071-03
7	244.83	2125.0	15454	14051-02	.17561-05
8	617.05	1963.3	47061	.55594-03	87781-06
9	781.34	1897.1	35901	.12331-03	33579-07
10	1627.3	1661.3	22248	.38085-04	.33488-08
11	1947.3	1605.0	95226-01	.35957-03	36107-06
12	2486.3	1601.6	22306-01	22429-03	.11181-06
13	4194.3				
R3D-250/277					
1	.00000	.00000	47.880	.00000	.00000
2	32.435	1553.0	47.880	.00000	16757-01
3	36.879	1764.3	46.887	22342	.39993-03
4	177.57	5052.3	7.7688	54618-01	.20346-03
5	234.41	5354.7	3.5319	19926-01	.20841-04
ఓ	324.89	5526.6	.43783	14269-01	.77635-04
7	365.67	5524.0	33855	47719-02	.61838-05
8	671.37	5153.2	-1.5224	.89945-03	11504-06
9	1078.3	4674.9	84744	.75900-03	36373-06
10	1848.7	4299.6	32931	10345-03	.17272-05
11	2052.2	4246.4	19290	.84705-03	43422-05
12	2118.2	4236.1	13783	13819-04	.97287-08
13	4371.8				
R3D-318/3 45					
1	.00000	.00000	55.585	.00000	.00000
2	20.612	1145.7	55.585	.00000	13473-01
3	27.748	1537.5	53.527	28844	.56916-03
4	187.14	5041.9	4.8800	16769-01	.29464-04
5	363.29	5542.2	1.7150	11987-02	21639-04
చ	476.70	5689.7	.60803	85612-02	.26293-04
7	559.67	5696.3	26960	20168-02	.18541-05
ខ	1071.3	5278.8	87732	.22885-03	18884-05
9	1306.7	5093.5	80106	50489-03	.29482-05
10	1490.0	4947.8	63339	.11167-02	15930-05
11	1724.8	4827.0	-,42797	52243-05	.93475-07
12	2335.8	4584.9	32965	.16612-03	47142-07
13	4875.6				· (/ = = =)

B-38 BRC 45-85

	I	T(I)	Y(I)	C(1,1)	C(I,2)	C(1,3)
R50-25	50/277					
	1	.00000	.00000	52.874	.00000	.00000
	2	16.649	880.32	52.874	.00000	99325-02
	3	26.344	1383.9	50.074	28889	.10480-02
	4	70.777	3130.4	30.609	14919	.33412-03
	5	185.93	5187.0	9.5407	33762-01	.11907-03
	6	203.15	5341.8	8.4842	27611-01	.19822-04
	7	633.50	5459.3	-4.2671	20190-02	.39457-04
	8	711.45	5133.1	-3.8626	.72078-02	11068-04
	9	868.98	4650.2	-2.4157	.19773-02	.20933-05
	10	1130.7	4200.9	95059	.36207-02	4884&-04
	11	1206.0	4129.1	-1.2358	74094-02	.33558-04
	12	1321.6	3939.0	-1.6035	.42283-02	48544-05
	13	1802.7				
R50-32	28/355					
	1	.00000	.00000	347.81	-76.262	7.3018
	2	3.4471	591.81	82.328	75277	.26049-02
	. ŝ	104.63	3913.6	9.9997	.37972-01	57154-03
	4	165.35	4532.8	8.2905	66125-01	.18909-03
	5	266.53	4890.5	.71660	87259-02	15800-04
	6	367.72	4857.3	-1.5347	13522-01	.69017-04
	7	413.79	4764.7	-2.3412	39837-02	.88552-05
	é	721.26	3925.9	-2.2763	.41946-02	81609-05
	9	840.37	3700.5	-1.6244	12785-02	50009-08
•	10	1467.6	3061.2	61084	.33743-03	81215-07
	11	2797.4	2654.7	14415	.13478-04	12731-08
	12	4888.3				
R5D-2	55/282				•	
	1	.00000	.00000	49.826	29187-01	22374-02
	2	30.187	1415.9	41.948	-,23181	.51485-03
	· 3	159.13	4074.5	7.8488	32652-01	.68242-04
	4	236.49	4517.9	4,0219	16814-01	.32497-04
	5	373.54	4836.9	1.2444	34532-02	25208-04
	٤	435.01	4894.5	.53411	81018-02	.10737-04
	7 .	759.44	4581.7	-1.3324	.23486-02	28048-05
	É	1116.9	4277.4	72850	65896-03	.31090-05
	9	1184.4	4226.2	77497	29541-04	.52204-06
	10	1776.6	3845.3	26068	.89795-03	23211-05
	11	1896.3	3843.0	14548	.64157-04	20664-07
	12	4889.8				

B-39 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(1,2)	C(I,3)
R5D-325/352					
1	.00000	.00000	54.778	.00000	.00000
2	19.749	1081.8	54.778	.00000	13886-01
3	26.769	1461.6	52.725	29243	.65575-03
4	157.63	4822.9	9.8771	35000-01	.47367-04
5	311.41	5686.3	2.4731	13148-01	.43907-05
٤	431.21	5801.5	48815	11570-01	.14775-03
7	449.00	5790.0	75951	36847-02	.39028-05
. 8	757.65	5319.3	-1.9187	70903-04	.14043-05
9	1115.6	4687.8	-1.4297	.14369-02	44747-05
10	1182.7	4597.0	-1.2973	.53590-03	.57592-07
11	1692.3	4082.7	70626	.62394-03	70802-06
12	1878.7	3948.1	54743	.22791-03	33522-07
13	4883.7				
R6A-661/688					
1	.00000	.00000	53.461	24152	73667-02
2	1.5832	84.007	52.641	27651	.35276-03
3	44.851	1872.6	30.694	23072	.63361-03
4	145.81	3271.7	3.4814	38817-01	.18994-03
5	196.92	3373.6	1.0022	96914-02	.71205-05
6	229.88	3396 .4	.38663	89873-02	.16725-04
7	409.15	3273.2	-1.2232	.79697-05	82269-05
8	452.88	3219.1	-1.2697	10711-02	.47898-05
9	738.10	2880.7	71165	.30274-02	12962-04
10	893.03	2795.1	70696	29972-02	. 28099-04
- 11	954.49	2744.9	77204	.19716-02	°21835-05
12	1447.9				
R6C-589/616					
1	.00000	.00000	102.60	-4.9382	.62201
2	2.2418	212.21	89.841	75487	.26307-02
3	79.225	3855.0	20.388	14731	.40816-03
4	195.62	4 876.0	2.6844	47955-02	11296-03
5	253.63	4993.5	.98759	24454-01	.85112-04
٤	328.92	4965.6	-1.2474	52284-02	.12419-04
7	458.26	4743.6	-1.9766	4 09&&-03	46023-05
8	613.79	4409.0	-2.4380	25568-02	.81091-04
9	643.16	4337.2	-2.3784	.45875-02	65594-05
10	980.04	380 5. 8	-1.5209	20422-02	.11055-04
11	1151.0	3541.4	-1.2502	.36260-02	28840-05
12	2286.6				

B-40 BRC 45-85

	. 1	T(I)	Y(I)	0(1.1)	C(1,2)	0(1,3)
R8C-44	4/471					
	1	.00000	.00000	68.558	.00000	.00000
	2	20.252	1388.4	48,558	.00000	12283
	3	22.367	1532.3	66.909	77957	.44149-02
	4	71.724	3466.4	22.220	12585	.21872-03
	. 5	129.74	4374.7	9.8262	87785-01	.51230-03
		166.08	4640.4	5.4754	31930-01	.42948-04
	7	363.60	4807.1	-2.1116	64806-02	.15226-04
	8	553.34	4277.2	-2.9265	.21862-02	.31445-05
	_	637.52	4048.2	-2.4916	.29804-02	22394-05
	9		3351.3	-1,1709	.99989-04	.19242-05
	10	1066.3	3030.1	31860	.22203-02	33050-04
	11	1433.6	3018.5	30265	18299-02	.18455-05
	1,2	1474.4	3015.0	.50200		
	13	2485.3				
R80-50	8/535	•				
	1	00000	.00000	43.600	.00000	.00000
	2	10.290	448.63	43.600	.00000	17230-01
	3	15.375	663.08	42.263	26285	.57132-03
	4	76.202	2394.9	16.628	15860	.56876-03
	5	137.03	2947.5	3.6467	54812-01	.25096-03
	<u>ن</u> خ	197.85	3023.0	23585	90173-02	28597-04
	ブ	275.47	2937.0	-2.1523	15676-01	.10608-03
	é	348.91	2736.4	-2.7383	.76967-02	66115-04
	9	376.19	2666.1	-2.4660	.22853-02	97952-04
	10	1097.9	1746.0	+.54166	.38102-03	18897-04
	11	2028:8	1419.6	32354	14670-03	.32842-08
	12	2499.1	1269.1	24359	.31669-03	10882-04
	13	4979.3				
RBD-47	77/504					•
	i	.00000	.00000	41.566	70015-01	37805-02
	2	23.171	878.51	32.232	33282	.11925-02
	3	122.91	1965.6	1.4302	.23998-01	21995-03
	4	182.76	2090.0	1.9394	15489-01	.45827-04
	5	271.13	2172.1	.27539	33397-02	.63545-05
	6	503.60	2135.4	24715	.10920-02	35002-05
	7	730.41	2094.7	29200	12897-02	.84642-05
	é	801.78	2070.4	34674	.52271-03	46523-06
	9	1132.2	1996.1	15369	.61529-04	95690-07
	10	1754.4	1901.2	18825	11709-03	.58305-04
	11	1874.8	1877.9	19109	.93521-04	29293-07
	12	4885.2	• • · · · ·			
	* 4-	7.5.551-				

B-41 BRC 45-85

R8D-565/592 1 .00000 .00000 76.666 -3.1742 .33373 2 2.7895 196.41 66.74838139 82887-03 3 70.176 3234.4 27.45620170 88487-03 4 110.61 4073.3 15.48594345-01 .17913-03 5 258.18 4879.16643715042-01 .15353-04 6 338.03 4737.9 -2.775211384-01 .37480-04 7 492.66 4175.2 -3.6075 .60019-0267505-05 8 716.17 3593.3 -1.9262 .14755-0222893-06 9 1070.0 3082.498172 .12219-02 .81495-06 10 1423.8 2851.942288 .35748-0314759-06 11 2401.4 2642.31470975347-04 .43331-07 R9A-523/550 R9A-523/550 1 .00000 .00000 63.90049594 .55747-02 2 39.535 2095.6 50.826 .1652442497-02 3 71.141 3732.9 48.5352277142703-02 4 102.75 4894.6 20.71164262 .68019-02 5 134.35 5122.1 .47407 .23378-0280679-05 6 152.35 5131.3 .55036 .19006-0280179-05 7 444.41 5254.43911951245-02 .75541-05 8 665.02 4999.8 -1.5493 .12511-02 .75831-05 10 2085.1 3633.743361 .12779-03 .76331-08 10 2085.1 3633.743361 .12779-03 .77335-04 11 2757.3 3423.415696 .28375-0382229-06 12 6.7075 370.52 55.239 .00000 .51290-02 3 31.169 1646.7 46.03237639 .10370-02 5 6.7075 370.52 55.239 .00000 .51290-02 3 31.169 1646.7 46.03237639 .77335-04 5 164.05 3250.4 .92614 .28655-01 .77363-02 5 164.05 3250.4 .92614 .28655-01 .31381-03 7 268.96 3718.6 .4393823649-02 .77385-03 7 268.96 3718.6 .4393823649-02 .77385-03 7 268.96 3718.6 .4393823649-02 .77385-03 7 268.96 3718.6 .4393823649-02 .77385-03 10 990.93 3038.973076 .50449-02 .77385-03 11 2828.8 2627.21388718424-03 .9225-05 10 990.93 3038.973076 .50449-02 .77485-03 11 2828.8 2627.21388718424-03 .9225-05 11 2828.8 2627.21388718424-03 .9225-05 11 2828.8 2627.21388718424-03 .9225-05 11 2828.8 2619.577419 .11381-02 .774851-05 11 2828.8 2627.21388718424-03 .9225-05 11 2828.8 2619.577419 .11381-02 .774851-05 11 2828.8 2619.577419 .11381-02 .774851-05 11 2828.8 2619.577419 .11381-02 .774851-05 11 38384.4	I	Т(I)	Y(I)	0(1,1)	C(1,2)	C(1,3)
1 .00000 .00000 76.666 -3.1742 .33373 2 2.7895 196.41 66.74838139 .88887-03 3 70.176 3234.4 27.45620170 .88487-03 4 110.61 4073.3 15.46594385-01 .17913-03 5 258.18 4879.16634715062-01 .15353-04 6 338.03 4737.9 -2.775211384-01 .37480-04 7 492.66 4175.2 -3.6075 .60019-0267505-05 8 716.17 3593.3 -1.9362 .14755-0223893-06 9 1070.0 3082.498172 .12219-0231435-06 10 1423.8 2851.942288 .35748-0314759-06 11 2401.4 2642.31470975347-04 .43331-07 R9A-523/550 R9A-523/550 R9A-523/550 1 .00000 .00000 63.90049594 .55747-02 2 39.535 2095.6 50.826 .1652442497-02 3 71.141 3732.9 48.5352377142703-02 4 102.75 4894.6 20.71164262 .88019-02 5 134.35 5122.1 .47407 .22378-02 .80099-05 6 152.35 5131.3 .55036 .19006-0280179-05 7 444.41 5254.43911951245-0280179-05 8 665.02 4999.8 -1.549312511-03 .76331-06 9 1033.2 4450.9 -1.3290 .72342-0318875-06 10 2085.1 3633.743361 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 RPB-449/476 RPB-449/476 RPB-449/476 RPB-449/476	. =====					
2 2.7895 194.41 64.748 -38139 .88887-03 3 70.176 3234.4 27.456 -20170 .88489-03 4 110.61 4073.3 15.45594345-01 .17913-03 5 258.18 4879.16634715062-01 .15353-04 6 338.03 4737.9 -2.775211384-01 .37480-04 7 492.66 4175.2 -3.6075 .60019-0267505-05 8 716.17 3593.3 -1.9362 .14755-0223893-06 9 1070.0 3092.498172 .12219-0281435-06 10 1423.8 2851.942288 .35748-0314759-06 11 2401.4 2642.31470975347-04 .43331-07 R9A-523/550 R9A-523/550 1 .00000 .00000 63.90049594 .55747-02 2 39.535 2095.6 50.826 .1652442497-02 3 71.141 3732.9 48.5552377142703-02 4 102.75 4894.6 20.71164262 .88019-02 5 134.35 5122.1 .47407 .22378-02 .80899-05 6 152.35 5131.3 .55036 .19002-0280179-05 7 444.41 5254.43911951245-0280179-05 8 665.02 4999.8 -1.549312511-03 .76831-06 9 1033.2 4450.9 -1.3290 .72342-0318875-06 10 2085.1 3633.743361 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 RPB-449/476 RPB-4	R8D-565/592					
196.41	1	.00000	.00000	76.666	-3.1742	.33373
70.176 3234.4 27.456 20170 .88487-03 4 110.61 4073.3 15.485 94365-01 .17913-04 5 258.18 4879.1 66347 15062-01 .15353-04 6 338.03 4737.9 -2.7752 11384-01 .37480-04 7 492.66 4175.2 -3.6075 .60019-02 67505-05 8 716.17 3593.3 -1.9362 .14755-02 23893-06 9 1070.0 3082.4 98172 .12219-02 23893-06 10 1423.8 2851.9 42288 .35748-03 14759-06 11 2401.4 2642.3 14709 75347-04 .43331-07 12 4884.8	_		196.41	66.748	38139	.88887-03
### 110.61				27.456	20170	.88489-03
\$ 258.18	_			15.485	94365-01	.17913-03
6 338.03 4737.9 -2.7752 -1.1384-01 .37480-04 7 492.66 4175.2 -3.6075 .60019-0267505-05 8 716.17 3593.3 -1.9362 .14755-0223893-06 9 1070.0 3032.498172 .12219-0281425-06 10 1423.8 2851.942288 .35748-0314759-06 11 2401.4 2642.31470975347-04 .43331-07 12 4884.8 R9A-523/550 1 .00000 .00000 63.90049594 .55747-02 2 39.535 2095.6 50.826 .1652442497-02 3 71.141 3732.9 48.5352377142703-02 4 102.75 4894.6 20.71164262 .63019-02 5 134.35 5122.1 .47407 .23378-0250879-05 6 152.35 5131.3 .55036 .19006-0250179-05 7 444.41 5254.43911951245-02 .75541-05 8 665.02 499.8 -1.5493 -1.2511-03 .76831-06 9 1033.2 4450.9 -1.3290 -1.279-03 .7335-07 11 2757.3 3423.415696 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 12 3885.7 R°B-449/476 R°B-449/476 R°B-449/476				66347	15062-01	.15353-04
## ## ## ## ## ## ## ## ## ## ## ## ##		_	4737.9	-2.7752	11384-01	.37490-04
1.00000					.60019-02	67505-05
9 1070.0 3032.498172 .12219-0281435-06 10 1423.8 2851.942288 .35748-0314759-06 11 2401.4 2642.31470975347-04 .43331-07 R9A-523/550 1 .00000 .00000 63.90049594 .55747-02 2 39.535 2095.6 50.826 .1652442497-02 3 71.141 3732.9 48.5352377142703-02 4 102.75 4894.6 20.71164262 .68019-02 5 134.35 5122.1 .47407 .23378-0280899-05 6 152.35 5131.3 .55036 .19006-0280179-05 7 444.41 5254.43911951245-02 .75541-05 8 665.02 4999.8 -1.549312511-03 .76321-06 9 1033.2 4450.9 -1.3290 .72343-0318875-06 10 2085.1 3633.743361 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 12 3385.7 R°B-449/476 R				-1.9362	.14755-02	
10 1423.8 2851.942288 .35748-0314759-06 11 2401.4 2642.31470975347-04 .43331-07 12 4884.8 R9A-523/550 R9A-523/550 1 .00000 .00000 63.90049594 .55747-02 2 39.535 2095.6 50.826 .1652442497-02 3 71.141 3732.9 48.5352377142703-02 4 102.75 4894.6 20.71164262 .63019-02 5 134.35 5122.1 .47407 .23378-0280899-05 6 152.35 5131.3 .55036 .19006-0280179-05 7 444.41 5254.43911951245-02 .75541-05 8 665.02 4999.8 -1.549312511-03 .76831-06 9 1033.2 4450.9 -1.3290 .72343-0318875-06 10 2085.1 3633.743381 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 12 3835.7 R9B-449/476 R9B-44			3082.4	98172	.12219-02	81435-06
R9A-523/550 1 .00000 .00000 63.90049594 .55747-02 2 39.535 2095.6 50.826 .1652442497-02 3 71.141 3732.9 48.5352377142703-02 4 102.75 4894.6 20.71164262 .63019-02 5 134.35 5122.1 .47407 .23378-0280899-05 6 152.35 5131.3 .55036 .19006-0280179-05 7 444.41 5254.43911951245-02 .75541-05 8 665.02 4999.8 -1.549312511-03 .76831-06 9 1033.2 4450.9 -1.3290 .72343-0318875-06 10 2085.1 3633.743361 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 12 3885.7 R°B-449/476 1 .00000 .00000 55.239 .00000 .00000 2 6.7075 370.52 55.239 .0000051290-02 3 31.169 1646.7 46.03237639 .10370-02 4 97.612 3347.7 9.749716968 .10363-02 5 164.05 3250.4 .92614 .36885-01 .31381-03 6 230.50 3682.7 1.671525667-01 .16726-03 7 268.96 3718.6 .4393863649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-02 .79851-05 10 980.93 3038.973076 .50447-0312422-06 11 2828.8 2627.31388712911 .355923-0316901-06	•			42288	.35748-03	14759-06
R9A-523/550 1 .00000 .00000 63.90049594 .55747-02 2 .99.535 .2095.6 50.826 .1652442497-02 3 .71.141 3732.9 48.5352377142703-02 4 .102.75 48.94.6 .20.71164262 .68019-02 5 .134.35 51.22.1 .47407 .23378-0250899-05 6 .152.35 5131.3 .55036 .19006-0280179-05 7 444.41 5254.43911951245-02 .75541-05 8 665.02 49.99.8 -1.5493 -1.2511-03 .76.831-06 9 .1033.2 4450.9 -1.3290 .72343-0318875-06 10 .2085.1 3633.743361 .12779-03 .77335-07 11 .2757.3 3423.415696 .28375-0362229-06 12 .3385.7 RPB-449/476 1 .00000 .00000 55.239 .00000 .51290-02 3 .31.169 .1646.7 46.03237639 .10370-02 4 .97.612 .3347.7 9.7497 .16968 .10363-02 5 .164.05 .3550.4 .92614 .36885-01 .31881-03 6 .230.50 .3682.7 1.671525647-01 .16726-03 7 .268.96 .3718.6 .4393863649-02 .76352-05 8 .557.87 .3498.4 -1.3262 .25359-03 .74450-06 9 .954.49 .3058.777419 .11381-02 .79851-05 10 .980.93 .2038.973076 .50447-03 .12422-06 11 .2284.8 .2619.512911 .35923-0316901-06			-	14709	75347-04	.43331-07
1 .00000 .00000 63.90049594 .55747-02 2 39.535 2095.6 50.826 .1652442497-02 3 71.141 3732.9 48.5352377142703-02 4 102.75 4894.6 20.71164262 .63019-02 5 134.35 5122.1 .47407 .23378-0280899-05 6 152.35 5131.3 .55036 .19006-0280179-05 7 444.41 5254.43911951245-02 .75541-05 8 665.02 4999.8 -1.549312511-03 .76331-06 9 1033.2 4450.9 -1.3290 .72343-0318875-06 10 2085.1 3633.743361 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 12 3385.7 RPB-449/476 1 .00000 .00000 55.239 .00000 .00000 2 6.7075 370.52 55.239 .0000051290-02 3 31.169 1646.7 46.03237639 .10370-02 4 97.612 3347.7 9.749716968 .10363-02 5 164.05 3550.4 .92614 .36985-0131381-03 6 230.50 3682.7 1.671525667-01 .16726-03 7 268.96 3718.6 .4393863649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-02 .79351-05 10 980.93 3038.973076 .50447-03 .1222-06 11 2828.8 2627.31388718424-03 .32258-05 12 2884.8 2619.512911 .35823-0316901-06						
2 39.535 2095.6 50.826 .1652442497-02 3 71.141 3732.9 48.5352377142703-02 4 102.75 4894.6 20.71164262 .63019-02 5 134.35 5122.1 .47407 .23378-0280899-05 6 152.35 5131.3 .55036 .19006-0280179-05 7 444.41 5254.43911951245-02 .75541-05 8 665.02 4999.8 -1.549312511-03 .76831-06 9 1033.2 4450.9 -1.3290 .72343-0318875-06 10 2085.1 3633.743361 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 12 33855.7 RPB-449/476 1 .00000 .00000 55.239 .00000 .00000 2 6.7075 370.52 55.239 .0000051290-02 3 31.169 1646.7 46.03237639 .10370-02 4 97.612 3347.7 9.749716968 .10363-02 5 164.05 3550.4 .92614 .36885-0131381-03 6 230.50 3682.7 1.671525667-01 .16726-03 7 268.96 3718.6 .4393863649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-0279851-05 10 980.93 3038.973076 .50447-0312422-06 11 2828.8 2627.31388718424-03 .32258-05 12 2984.8 2619.512911 .35823-0316901-06	R9A-523/550					
2 39.535 2095.6 50.826 .1652442497-02 3 71.141 3732.9 48.5352377142703-02 4 102.75 4894.6 20.71164262 .63019-02 5 134.35 5122.1 .47407 .23378-0280899-05 6 152.35 5131.3 .55036 .19006-0280179-05 7 444.41 5254.43911951245-02 .75541-05 8 665.02 4999.8 -1.549312511-03 .76831-06 9 1033.2 4450.9 -1.3290 .72343-0318875-06 10 2085.1 3633.743361 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 12 33855.7 RPB-449/476 1 .00000 .00000 55.239 .00000 .00000 2 6.7075 370.52 55.239 .0000051290-02 3 31.169 1646.7 46.03237639 .10370-02 4 97.612 3347.7 9.749716968 .10363-02 5 164.05 3550.4 .92614 .36885-0131381-03 6 230.50 3682.7 1.671525667-01 .16726-03 7 268.96 3718.6 .4393863649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-0279851-05 10 980.93 3038.973076 .50447-0312422-06 11 2828.8 2627.31388718424-03 .32258-05 12 2984.8 2619.512911 .35823-0316901-06	4	00000	00000	A3. 200	49594	.55747-02
3 71.141 3732.9 48.5352377142703-02 4 102.75 4894.6 20.71164262 .68019-02 5 134.35 5122.1 .47407 .23378-0280899-05 6 152.35 5131.3 .55036 .19006-0280179-05 7 444.41 5254.43911951245-02 .75541-05 8 665.02 4999.8 -1.549312511-03 .76831-06 9 1033.2 4450.9 -1.3290 .72343-0318875-06 10 2085.1 3633.743361 .12779-03 .77355-07 11 2757.3 3423.415696 .28375-0362229-06 12 3385.7 RPB-449/476 1 .00000 .00000 55.239 .00000 .00000 2 6.7075 370.52 55.239 .0000051290-02 3 31.169 1646.7 46.03237639 .10370-02 4 97.612 3347.7 9.749716968 .10363-02 5 164.05 3550.4 .92614 .36885-0131381-03 6 230.50 3682.7 1.671525667-01 .16726-03 7 268.96 3718.6 .4393863649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-02 .79851-05 10 980.93 3038.973076 .50447-0312422-06 11 2828.8 2627.31388718424-03 .32258-05 12 2884.8 2619.512911 .35823-0316901-06	_	•	•			•
4 102.75 4894.6 20.71164262 .68019-02 5 134.35 5122.1 .47407 .23378-0280899-05 6 152.35 5131.3 .55036 .19006-0280179-05 7 444.41 5254.43911951245-02 .75541-05 8 665.02 4999.8 -1.549312511-03 .76931-06 9 1033.2 4450.9 -1.3290 .72343-0318875-06 10 2085.1 3633.743361 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 12 3385.7	- · · · - -					
\$ 134.35						
\$\begin{array}{cccccccccccccccccccccccccccccccccccc						
7 444.41 5254.43911951245-02 .75541-05 8 665.02 4999.8 -1.549312511-03 .76831-06 9 1033.2 4450.9 -1.3290 .72343-0318875-06 10 2085.1 3633.743361 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 12 3885.7 RPB-449/476 1 .00000 .00000 55.239 .00000 .00000 2 6.7075 370.52 55.239 .0000051290-02 3 31.169 1646.7 46.03237639 .10370-02 4 97.612 3347.7 9.749716968 .10363-02 5 164.05 3550.4 .92614 .36885-0131381-03 6 230.50 3682.7 1.671525667-01 .16726-03 7 268.96 3718.6 .4393863649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-0279851-05 10 980.93 3038.973076 .50447-0312422-06 11 2828.8 2627.31388718424-03 .32258-05 12 2884.8 2619.512911 .35823-0316901-06				•		
8 665.02 4999.8 -1.549312511-03 .76831-06 9 1033.2 4450.9 -1.3290 .72343-0318875-06 10 2085.1 3633.743361 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 12 3385.7 R°B-449/476 1 .00000 .00000 55.239 .00000 .00000 2 6.7075 370.52 55.239 .0000051290-02 3 31.169 1646.7 46.03237639 .10370-02 4 97.612 3347.7 9.749716968 .10363-02 5 164.05 3550.4 .92614 .36855-0131381-03 6 230.50 3682.7 1.671525667-01 .16726-03 7 268.96 3718.6 .4393863649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-0279851-05 10 980.93 3038.973076 .50447-0312422-06 11 2828.8 2627.31388718424-03 .32258-05 12 2884.8 2619.512911 .35823-0316901-06						
9 1033.2 4450.9 -1.3290 .72343-0318875-04 10 2085.1 3633.743361 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 12 3885.7 R**PB-449/476 1 .00000 .00000 55.239 .00000 .00000 2 6.7075 370.52 55.239 .0000051290-02 3 31.169 1646.7 46.03237639 .10370-02 4 97.612 3347.7 9.749716968 .10363-02 5 164.05 3550.4 .92614 .36885-0131381-03 6 230.50 3682.7 1.671525667-01 .16726-03 7 268.96 3718.6 .4393863649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-02 .79851-05 10 980.93 3038.973076 .50447-0312422-06 11 2828.8 2627.313887 +.18424-03 .32258-05 12 2884.8 2619.512911 .35823-0316901-06						
10 2085.1 3633.743361 .12779-03 .77335-07 11 2757.3 3423.415696 .28375-0362229-06 12 3385.7 R**B-449/476 1 .00000 .00000 55.239 .00000 .00000 2 6.7075 370.52 55.239 .0000051290-02 3 31.169 1646.7 46.03237639 .10370-02 4 97.612 3347.7 9.749716968 .10363-02 5 164.05 3550.4 .92614 .36885-0131381-03 6 230.50 3682.7 1.671525667-01 .16726-03 7 268.96 3718.6 .4393863649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-0279851-05 10 980.93 3038.973076 .50447-0312422-06 11 2828.8 2627.31388718424-03 .32258-05 12 2884.8 2619.512911 .35823-0316901-06						
11 2757.3 3423.415696 .28375-0362229-06 12 3385.7 R9B-449/476 1 .00000 .00000 55.239 .00000 .00000 2 6.7075 370.52 55.239 .0000051290-02 3 31.169 1646.7 46.03237639 .10370-02 4 97.612 3347.7 9.749716968 .10363-02 5 164.05 3550.4 .92614 .36885-0131831-03 6 230.50 3682.7 1.671525667-01 .16726-03 7 268.96 3718.6 .4393863649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-0279851-05 10 980.93 3038.973076 .50447-0312422-06 11 2828.8 2627.31388718424-03 .32258-05 12 2884.8 2619.512911 .35823-0316901-06				-		
12 3885.7 RPB-449/476 1 .00000 .00000 55.239 .00000 .00000 2 6.7075 370.52 55.239 .0000051290-02 3 31.169 1646.7 46.03237639 .10370-02 4 97.612 3347.7 9.749716968 .10363-02 5 164.05 3550.4 .92614 .36885-0131381-03 6 230.50 3682.7 1.671525667-01 .16726-03 7 268.96 3718.6 .4393863649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-0279851-05 10 980.93 3038.973076 .50447-0312422-06 11 2828.8 2627.31388718424-03 .32258-05 12 2884.8 2619.512911 .35823-0316901-06						60229-06
1 .00000 .00000 55.239 .00000 .00000 2 6.7075 370.52 55.239 .00000 51290-02 3 31.169 1646.7 46.032 37639 .10370-02 4 97.612 3347.7 9.7497 16968 .10363-02 5 164.05 3550.4 .92614 .36885-01 31381-03 6 230.50 3682.7 1.6715 25667-01 .16726-03 7 268.96 3718.6 .43938 63649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.7 77419 .11381-02 79851-05 10 980.93 3038.9 73076 .50447-03 12422-06 11 2828.8 2627.3 13887 18424-03 .32258-05 12 2884.8 2619.5 12911 .35823-03 16901-06		•	04 2 014	110070		
1 .00000 .00000 .55.239 .00000 .00000 2 6.7075 370.52 55.239 .00000 51290-02 3 31.169 1646.7 46.032 37639 .10370-02 4 97.612 3347.7 9.7497 16968 .10363-02 5 164.05 3550.4 .92614 .36985-01 31381-03 6 230.50 3682.7 1.6715 25667-01 .16726-03 7 268.96 3718.6 .43938 63649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.7 77419 .11381-02 79851-05 10 980.93 3038.9 73076 .50447-03 12422-06 11 2828.8 2627.3 13887 +.18424-03 .32258-05 12 2884.8 2619.5 12911 .35823-03 16901-06	• • •	0000.7				
2 6.7075 370.52 55.239 .0000051290-02 3 31.169 1646.7 46.03237639 .10370-02 4 97.612 3347.7 9.749716968 .10363-02 5 164.05 3550.4 .92614 .36995-0131391-03 6 230.50 3682.7 1.671525667-01 .16726-03 7 268.96 3718.6 .4393863649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-0279851-05 10 980.93 3038.973076 .50447-0312422-06 11 2828.8 2627.313887 +.18424-03 .32258-05 12 2884.8 2619.512911 .35823-0316901-06	R9B-449/476		•			
2 6.7075 370.52 55.239 .00000 51290-02 3 31.169 1646.7 46.032 37639 .10370-02 4 97.612 3347.7 9.7497 16968 .10363-02 5 164.05 3550.4 .92614 .36895-01 31381-03 6 230.50 3682.7 1.6715 25667-01 .16726-03 7 268.96 3718.6 .43938 63649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.7 77419 .11381-02 79851-05 10 980.93 3038.9 73076 .50447-03 12422-06 11 2828.8 2627.3 13887 +.18424-03 .32258-05 12 2884.8 2619.5 12911 .35823-03 16901-06	1	. 00000	.00000	55.239	.00000	.00000
3 31.169 1646.7 46.032 37639 .10370-02 4 97.612 3347.7 9.7497 16968 .10363-02 5 164.05 3550.4 .92614 .36895-01 31381-03 6 230.50 3682.7 1.6715 25667-01 .16726-03 7 268.96 3718.6 .43938 63649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.7 77419 .11381-02 79851-05 10 980.93 3038.9 73076 .50447-03 12422-06 11 2828.8 2627.3 13887 +.18424-03 .32258-05 12 2884.8 2619.5 12911 .35823-03 16901-06		•		55.239	.00000	51290-02
4 97.612 3347.7 9.7497 16968 .10363-02 5 164.05 3550.4 .92614 .36885-01 31381-03 6 230.50 3682.7 1.6715 25667-01 .16726-03 7 268.96 3718.6 .43938 63649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.7 77419 .11381-02 79851-05 10 980.93 3038.9 73076 .50447-03 12422-06 11 2828.8 2627.3 13887 +.18424-03 .32258-05 12 2884.8 2619.5 12911 .35823-03 16901-06	3		1646.7	46.032	37639	.10370-02
5 164.05 3550.4 .92614 .36885-01 31381-03 6 230.50 3682.7 1.6715 25667-01 .16726-03 7 268.96 3718.6 .43938 63649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.7 77419 .11381-02 79851-05 10 980.93 3038.9 73076 .50447-03 12422-06 11 2828.8 2627.3 13887 +.18424-03 .32258-05 12 2894.8 2619.5 12911 .35823-03 16901-06			3347.7	9.7497	16968	.10363-02
6 230.50 3682.7 1.6715 25667-01 .16726-03 7 268.96 3718.6 .43938 63649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.7 77419 .11381-02 79851-05 10 980.93 3038.9 73076 .50447-03 12422-06 11 2828.8 2627.3 13887 +.18424-03 .32258-05 12 2884.8 2619.5 12911 .35823-03 16901-06				.92614	.36885-01	31381-03
7 268.96 3718.6 .43938 63649-02 .76362-05 8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.7 77419 .11381-02 79851-05 10 980.93 3038.9 73076 .50447-03 12422-06 11 2828.8 2627.3 13887 +.18424-03 .32258-05 12 2884.8 2619.5 12911 .35823-03 16901-06				1.6715	25667-01	.16726-03
8 557.87 3498.4 -1.3262 .25359-03 .74350-06 9 954.49 3058.777419 .11381-0279851-05 10 980.93 3038.973076 .50447-0312422-06 11 2828.8 2627.31388718424-03 .32258-05 12 2884.8 2619.512911 .35823-0316901-06	_				63649-02	.76362-05
9 954.49 3058.7 77419 .11381-02 79851-05 10 980.93 3038.9 73076 .50447-03 12422-06 11 2828.8 2627.3 13887 18424-03 .32258-05 12 2884.8 2619.5 12911 .35823-03 16901-06						.74350-06
10 980.93 3038.9 73076 .50447-03 12422-06 11 2828.8 2627.3 13887 +.18424-03 .32258-05 12 2884.8 2619.5 12911 .35823-03 16901-06						79851-05
11 2828.8 2627.313887 +.18424-03 .32258-05 12 2884.8 2619.512911 .35823-0316901-06					-	12422-06
12 2984.8 2619.512911 .35823-0316901-06		-				.32258-05
•=						16901-06

B-42 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(I,2)	C(I,3)
R9C-39	5/422					
	1	.00000	.00000	92.351	.00000	.00000
	2	15.131	1397.3	92.351	.00000	46974
	3	15.691	1449.0	91.909	78932	.23151-02
	4	122.08	5080.9	2.5705	50382-01	.36941-03
	5	185.92	5135.8	. 65428	.20363-01	14681-03
	Ė	252.18	5225.8	1.4191	88201-02	.84107-05
	7	330.03	5286.8	.19881	68559-02	.78471-05
	é	674.33	4862.8	-1.7315	.12494-02	47285-06
	9	1424.7	4067.3	65514	.18500-03	.32862-06
	10	1874.2	3840.0	23970	.62909-03	85231-06
	11	2399.6	3737.6	33554	71533-03	.14170-05
	12	2710.8	3606.6	36899	.60789-03	25799-06
	13	4879.7				
R9D-31	7/344					
			.00000	63.391	.00000	.00000
	1	.00000 31.379	1989.1	63.391	.00000	12136
	2		2093.3	62.397	60145	.20696-02
	3	33.031	4318.3	5.1374	78934-01	.41020-03
	4	117.19 191.58	4318.3 4432.5	.20371	.12616-01	63414-04
	5		4510.4	.20371	52518-02	.43443-05
	<u> </u>	285.50 819.22	4152.8	99810	.17041-02	90586-04
	7	866.81	4099.4	-1.4515	11230-01	.11722-03
	· 8 9	934.38	3986.2	-1.3634	.12533-01	12943-03
		966.09	3951.4	95898	.22078-03	47523-07
	10 11	1921.2	3278.3	40717	.35695-03	13418-05
	12	1983.5	3254.0	37832	.10631-03	28658-09
	13	4882.9	3234.0			
R10A-3	20/347					
		.00000	.00000	66.934	11046	22871-02
	1		1579.3	57.017	28328	.52062-03
	2	25.188	4090.9	28.674	18968	.52069-03
	3	85.114	5240.1	11.550	96072-01	.31549-03
	4	145.04	5455.2	3.4348	39353-01	.62585-04
	5	204.97	5521.7	-3.9990	12365-01	37937-04
	د. 7	348.71 519.32	3321.7 4667.9	-4.9054	.70522-02	54991-05
	/ 8	713.52	3941.0	-2.7884	.38484-02	23373-05
	8 9	1065.4	3334.5	94828	.13811-02	87246-06
	10	1783.2	3042.7	31419	49774-03	.12150-05
		1994.3	2965.6	36189	.27180-03	63706-07
	11	1994.3 4872.8	2/00.0	.00107		· · · · · ·
	12	43/2.3				

B-43 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(1,2)	C(1,3)
R10B-418	/445					
	1	.00000	.00000	53.178	.00000	.00000
	2	59.547	3166.6	53.178	.00000	13526-01
	3	69.012	3658.5	49.543	38409	.11242-02
	4	173.28	5922.8	6.1115	32429-01	.10908-03
	5	249.30	6247.9	3.0721	75543-02	.88269-05
	٤	509.54	6691.3	.93367	66311-03	68645-04
	7	573.78	6730.4	15556-02	13894-01	.23572-03
	ė	592.84	6726.9	27430	41900-03	21272-07
	9	1182.9	6414.9	79094	45647-03	.60737-05
	10	1221.6	6383.9	79897	.24901-03	25790-07
	11	3122.2	5587.8	13190	.10196-03	19468-06
	12	3597.4	5527.3	16687	17556-03	.18195-06
	12	4050 0				

B-44 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(I,2)	C(I.3)
R1A-175	7201					
	1	.00000	.00000	18940.	.00000	.00000
	2	.46971	8896.1	18940.	.00000	13790+06
	ŝ	.51184	9683.7	18205.	-17429.	4420.4
	4	.79184	13512.	9484.7	-13716.	4405.5
	5	1.0718	15189.	2839.7	-10016.	1983.9
	٤	1.3218	15304.	-1796.1	-8527.7	1195.3
	7	1.5718	14341.	-5835.8	-7631.2	8322.7
	8	2.0742	10538.	-7202.0	4911.6	-1293.6
	9	3.2664	6741.0	-1006.8	284.75	49.284
	10	4.8006	5692.3	-474.00	62.523	-4.9113
	11	8.2367	4602.6	-218.29	11.896	42486
	12	17.707				
R1B-131	1/157	•				
		.00000	.00000	11093.	.00000	.00000
	1 2	.30321	3363.5	11093.	.00000	-3179.7
	3	.49047	5419.9	10758.	-1786.3	-662.19
	4	1.2355	12170.	6994.2	-3266.3	-656.87
	5	1.9805	15296.	1033.7	-4734.4	2131.3
	ے د	2.2305	15292.	-933.91	-3136.0	2177.9
	7	2.4805	14896.	-2093.6	-1502.6	628.30
	é	4.0888	10256.	-2051.1	1529.0	_893 . 55
	9	4.5791	9512.8	-1196.2	214.65	-23.126
	10	7.0482	7519.7	-559.21	43.356	-1.6057
	11	15,155	4980.1	-172.84	4.3024	55957-01
	12	49.075		. •		
R2A-11	0/135	•				
	1	.00000	.00000	14287.	.00000	.00000
	2	.25472	3639.1	14287.	.00000	30059.
	3	.26855	3837.9	14472.	7317.7	52196+06
	4	.30255	4318.0	13159.	-45927.	.85091+04
,	5	.35888				

B-45 BRC 45-85

STRAIN RATE = (10E-3)/SECTEMPERATURE = -5° C

B-47 BRC 45-85

1	T(I)	Y(I)	C(1,1)	E(1,2)	C(I,3)

R1A-175/201					
1	.00000	.00000	18940.	.00000	.00000
2	.46971	8896.1	18940.	.00000	13790+06
3	.51184	9683.7	18205.	-17429.	4420.4
4	.79184	13512.	9484.7	-13716.	4405.5
5	1.0718	15189.	2839.7	-10016.	1983.9
૯ .	1.3218	15304.	-1796.1	-8527.7	1195.3
7	1.5718	14341.	-5835.8	-7631.2	8322.7
8	2.0742	10538.	-7202.0	4911.6	-1293.6
9	3.2664	6741.0	-1006.8	284.75	48.284
10	4.8006	5692.3	-474.00	62.523	-4.9113
11	8.2367	4602.6	-218.29	11.896	42486
12	17.707				
R1B-131/157					
1	.00000	.00000	11093.	.00000	.00000
2	.30321	3363.5	11093.	.00000	-3179.7
3	.49047	5419.9	10758.	-1785.3	-662.19
4	1.2355	12170.	6994.2	-3266.3	-656.87
5	1.9805	15296.	1033.7	-4734.4	2131.3
٤	2.2305	15292.	-933.91	-3136.0	2177.9
7	2.4805	14896.	-2093.6	-1502.6	628.30
8	4.0888	10256.	-2051.1	1529.0	-893.55
9	4.5791	9512.8	-1196.2	214.65	-23.126
10	7.0482	7519.7	-559.21	43.356	-1.6057
11	15.155	4980.1	-172.84	4.3024	55957-01
12	49.075				
R2A-110/135					
1	.00000	.00000	14287.	.00000	.00000
2	.25472	3639.1	14287.	.00000	30059.
3	.26855	3837.9	14472.	7317.7	52195+06
4	.30255	4318.0	13159.	-45927.	.85091+06
5	. 35 888				

B-48 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(1,2)	0(1,3)
R2B-135/161					
1	.00000	.00000	15358.	.00000	.00000
2		2599.0	15358.	.00000	-20166.
3		5459.5	13031.	-11864.	-57250 .
. 4		6060.2	11465.	-20243.	.10702+06
5		6908.3	10287.	5619.3	-35873.
6		9076.3	7479.4	-18268.	.26035+06
7		9364.4	7273.3	13142.	-81963.
8	•				
R3A-188/213					
. 1	.00000	.00000	13686.	.00000	.00000
2		5757.3	13686.	.00000	-43496.
3		6841.7	12831.	-10560.	2503.3
4		10330.	5890.4	-7705.9	2412.5
= = =		11588.	1079.1	-4955.6	2551.8
- -		11588.	-920.27	-3041.7	2427.1
7		11206.	-1986.1	-1221.4	983.02
		10376.	-2483.5	-157.27	974.83
5		9727.6	-2362.7	614.86	-63.277
10		6415.4	-373.45	20.544	49264
11		3988.2	-90.372	1.9247	20276-01
12		• • • • • • • • • • • • • • • • • • • •			
R3B-130/155	i			,	
1	.00000	.00000	14320.	.00000	.00000
2		4596.8	14320.	•. 00000	• -17695.
3		7708.9	11439.	-12366.	3717.3
2		9 8 &8.&	5904.9	-9550.3	3573.0
5		10808.	1765.3	-6943.8	3793.5
6		10881.	-945.27	-3998.6	3557 . 7
9		10450.	-2277.5	-1330.3	1150.6
ś		9376.5	-2799.4	79.696	1107.8
9		8770.4	-2587.2	921.63	-102.76
10		5818.1	-402.60	40.322	-1.6934
1 1		4352.8	-83.563	2.2491	27078-01
12					
**					

B-49 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(1,2)	C(1,3)
R4A-283/309					
1	.00000	.00000	14819.	.00000	.00000
2	.31931	4732.0	14819.	.00000	-15812.
3	.52702	7670.1	12791.	-9809.5	5787.0
4	.66733	9287.7	10380.	-7373.6	-41323.
5	.80211	10452.	6139.8	-24083.	.10125+06
٤	.92307	11021.	4758.3	12661.	63637+06
7	1.0095				
R4B-299/32 5					
1	.00000	.00000	12769.	.00000	.00000
2	.54611	6973.2	12769.	.00000	33446+06
3	.55794	7123.8	12628.	-11878.	2825.1
4	.82794	9723.2	6832.2	-9589.6	2906.2
5	1.0979	10926.	2289.4	-7235.6	2671.8
6	1.3479	11088.	-827.47	-5231.7	2937.4
7	1.5979	10600.	-2892.6	-3028.7	2816.6
8	2.2723	8135.4	-3134.6	2669.9	-1241.2
9	2.9309	6874.7	-1232.9	217.53	-16.225
10	7.1064	4338.0	-264.98	14.290	37480
11	18.190	2646.3	-88.343	1.8275	18087-01
12	48.628				
R5A-135/161					
1	.00000	.00000	23586.	.00000	.00000
2	.19089	4502.4	23586.	.00000	13406+06
3	.19940	4703.1	23564.	-3003.1	2864.1
4	.30268	7107.8	23034.	-2116.0	20458+06
5	.39924	9128.4	16904.	-61380.	.46384+06
6	.47903	10322.	15968.	49647.	89517+06
7	.51687	10949.	15880.	-51988.	.29420+08
ខ	.60034	12083.	13350.	21676.	18255+06
9	.77705				

_

B-50 BRC 45-85

	I	T(I)	Y(I)	C(I.1)	, C(I,2)	C(1.3)
R5B-141/	167					
	1	.00000	.00000	15134.	.00000	.00000
	2	.27121	4105.0	15136.	.00000	-30588.
	3	. 27169	4112.3	15136.	-38.715	-5984.4
	4	.50352	7544.8	14153.	-4201.0	27169.
	5	.61266	9074.7	14207.	4693.5	18359+06
	6	.64701	9560.3	13880.	-14223.	40741.
	7	.80601	11572.	12447.	5210.5	-33290.
	é	.96501	13549.	11579.	-10669.	20051.
	9	1.2258	200 170			
R7A-005/	031					
	1	.00000	.00000	10634.	.00000	.00000
	2	.16402	1744.1	10634.	.00000	29571+06
	3	.17024	1810.2	10600.	-5471.8	12738.
•	4	.39615	4072.4	10078.	3160.9	-53758.
	5	.44574	4573.4	9994.8	-4836.8	7734.5
	ė.	70207	6947.9	9039.7	1111.0	-26801.
	7	.88554	8485.0	6713.7	-13720.	70765.
	8	1.0022	9187.7	6381.0	10845.	50822+06
	9	1.0849				•
R7B-072/	098					
	1	.00000	.00000	22913.	.00000	.00000
		.11785	2700.2	22913.	.00000	73530+06
	2 3	.16691	3737.8	17616.	10810+06	.33806+06
	4	.26659	4754.5	614Î.8	-7001.3	-6395.6
	5	41485	5490.3	3644.0	-9845.9	24262.
	6	.60164	5985.6	2505.2	3749.2	-39364.
	7	.75279	6313.9	940.43	-14101.	39090.
	8	1.0627				

B-51 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(I,2)	0(1,3)
				arte milit dest sein oten sess	
R8A-033/059					
1	.00000	.00000	5952.4	.00000	.00000
2 3	.75479 .75495	4492.8	5952.4	.00000	64288.
RSB-011/037					
1	.00000	.00000	15116.	.00000	.00000
2	.23845	3604.4	15116.	.00000	29782+06
· 2 3	.25168	3803.7	14961.	-11757.	34288.
4	.45797	6690.7	14488.	9462.9	11308+06
5	.54993	8015.2	13360.	-21733.	.13019+06
6	.63246	9042.9	12432.	10500.	11874+07
7	.69141				
R2C-049/076					
1	.00000	.00000	8084.5	.00000	.00000
2	.48159	3893 .4	8084.5	.00000	-5440.0
3	.86330	6676 . 8	5706.6	-6229.5	1696.1
4	1.0608	7574.0	3444.4	-5224.6	1551.1
5	1.2583	8062.4	1562.2	-4305.6	1727.6
٠ 6	1.5083	8210.9	-286.64	-3009.9	1448.6
7	1.7583	7978.7	-1500.0	-1923.4	2016.6
8	1.8808	7769.8	-1880.4	-1182.5	1580.5
9	2.2338	7028.1	-2124.3	491.52	-41.631
10	6.0902	3753.1	-190.73	9.8787	19090
11	23.983	2414.5	-20.569	36844	.18786-01
12	49.898			•	

B-52 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(I,2)	0(1,3)
R2D-134	1/161					
	1	.00000	.00000	8892.0	.00000	.00000
	2	.66843	5943.6	8892.0	.00000	16594+06
	3	.68360	6078.0	8777.4	-7551.9	1827.4
	4	1.0711	8451.6	3747.9	-5427.6	1839.0
	5	1.4586	9195.9	369.90	-3289.7	1834.7
	٤	1.7086	9111.4	-930.96	-1913.7	1834.2
	7	1.9586	8787.7	-1543.9	-538.06	325.04
	8	3.0336	6910.0	-1573.8	510.21	-111.81
	÷.	3.9657	5795.8	-914.12	197.56	-19.449
	10	6.9882	4300.7	-252.88	21.208	83830
	11	14.044	3260.0	-86.350	2.3941	31429-01
	12	49.824				
R40-244	1/271					
	1	.00000	.00000	10936.	.00000	.00000
	2	.84974	9292.9	10936.	.00000	44946+06
	ີ້	.92014				
R4C-301	9/336					
	i	.00000	.00000	8423.4	.00000	.00000
	ż	.55312	4659.1	8423.4	.00000	-18190.
	3	.61842	5204.2	8190.7	-3563.8	348.41
	4	1.3509	9428.6	3530.5	-2798.2	343.74
	5	2.0934	10648.	-15.512	-2042.8	944.26
	É	2.3334	10532.	-859.87	-1334.6	933.94
	7	2.5834	10248.	-1352.1	-634.18	294.94
	É	3.7225	8320.9	-1648.8	373.67	-40.336
	9	5.9036	6083.7	-594.42	109.74	-10.724
	10	8.7967	5022.8	-228.74	16.661	61673
	11	16.739	3948.1	-80.797	1.9885	27602-01
	12	49.868				

B-53 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(1,2)	C(1,3)

R4D-228/255					
1	.00000	.00000	12653.	.00000	.00000
2	.39871	5045.0	12653.	.00000	25517+06
3	.45915	5753.9	9873 . &	-46128.	.92024+05
4	.48359	5981.1	9267.7	21332.	-93024.
. 5	.66911	•			
R7C-007/034					
1	.00000	.00000	18421.	.00000	.00000
2	.29773	5484.5	18421.	.00000	84240+06
3	.32238	5926.3	16919.	-61613.	.2035&+0&
4	. 42735	7259.0	10713.	2494.2	-21567.
5	.56548	8729.5	10168.	-6442.5	-3324.0
٤.	.70360	10002.	8197.9	-7820.0	-1207.5
7	.93013				
R6A-398/425					
· 1	.00000	.00000	11671.	.00000	.00000
` 2	.21456	2504.1	11671.	.00000	-47579.
3	.24054	2806.4	11574.	-3708.3	-848.04
4	.79054	7909.4	6725.6	-5107.6	-894.95
5	1.3405	9914.6	295.08	-6584.2	4601.6
٤	1.5905	9648.7	-2134.2	-3133.0	4489.2
7	1.8405	8989.5	-2859.0	233.88	155.73
ខ	2.9735	6276.9	-1729.3	763.20	-157.16
9	4.4087	4902.5	-509.83	86.547	-10.732
10	6.2970	4176.1	-297.78	25.749	-1.2786
11	12.006	3077.4	-128.80	3.8516	46789-01
12	49.996				

B-54 BRC 45-85

	I	T(1)	Y(I)	C(I,1)	C(1,2)	C(I,3)
R&A-5	504/531					
	1	.00000	.00000	9014.1	-1574.8	796.35
	ž	.41953	3563.3	8113.3	-572.54	-1241.2
	3	1.0445	8107.4	5943.0	-2899.8	-1248.6
	4	1.6695	10384.	855.07	-5240.9	3523.8
	5	1.9195	10326.	-1104.7	-2598.1	3617.6
	٨	2.1695	9943.5	-1725.5	115.08	14.000
	7	2.6394	9159.7	-1608.1	134.81	14.054
	8	4.7289	6516.4	-860.63	222.90	-26.456
	9	7.3888	5306.4	-236.36	11.783	26568
	10	19.959	3669.4	-66.074	1.7640	25121-01
	11	49.975				
R70-0	088/114					
	1	.00000	.00000	22267.	-21213.	19644.
	. 2	.20110	3779.7	16118.	-9361.5	1727.4
	3	.78360	10334.	6970.5	-6342.8	1728.6
	4	1.3661	12583.	1340.6	-3322.2	1712.9
	5	1.6161	12738.	.68349	-2037.5	534.50
	ė.	1.8661	12619.	-917.46	-1635.1	521.43
	7	3.7544	8567.0	-1514.8	1318.8	-700.84
	8	4.3622	7976.1	-688.40	40.997	2.4792
	9	5.9434	6999.9	-540.15	52.757	-2.3417
	10	12.891	5003.4	-146.18	3.9515	48775-01
	11	50.021				
R90-0	080/107	·				
	1	.00000	.00000	10462.	.00000	.00000
	2	.21541	2253.6	10462.	.00000	-87440.
,	3	.22487	2352.5	10438.	-2481.2	-333.67
	4	.96737	2579.4	6201.8	-3224.5	-331.65
	Ś	1.7099	11290.	864.90	-3963.3	2089.7
	٤	1.9599	11291.	-724.92	-2396.0	2136.3
	7	2.2099	10993.	-1522.4	-793.80	349.39
	é	3.5420	8382.6	-1777.2	602.50	-99.025
	9	5.3284	6566.0	-572.64	71.801	-3.8739
	10	10.500	4989.1	-140.82	11.700	73017
	11	15.000	4525.8	-79.874	1.8428	21283-01
	12	49.990				

B-55 BRC 45-85

• 1	T(I)	Y(I)	C(I,1)	C(1,2)	C(1.3)
		days when weeks with delign states			
R9D-082/109					
1	.00000	.00000	9935.1	.00000	.00000
2	.11763	1168.6	9935.1	.00000	-2130.7
3	.34445	3397.2	9606.3	-1449.9	-1280.3
4	.93195	8280.9	6576.9	-3706.4	-1292.0
5	1.5194	10604.	884.02	-5983.6	3334.8
6	1.7694	10503.	-1482.5	-3482.5	3345.7
7	2.0194	9966.6	-2596.4	-973.20	666.52
8	3.1214	6815.5	-2313.1	1230.3	-282.61
9	4.5173	5215.3	-530.34	46.847	-1.6310
10	12.977	3094.0	-87.880	5.4525	31673
11	21.149	2567.1	-62.219	-2.3124	.11160
12	50.019				
R1A-300/326					
i	.00000	.00000	16362.	.00000	.00000
2	.26116	4273.1	16362.	.00000	-58142.
3	.28622	4682.2	16253.	-4360.7	11347.
4	.49362	7966.7	15908.	2699.3	-19978.
5	. 67061	10756.	14986.	-7908.3	32520.
É	.82923	13064.	14932.	7566.5	-98236.
7	.88838	13953.	14796.	<u>,</u> -9865.8	15940.
9	1.1150	16986.	12784.	987.15	-6803.3
9	1.3576				
R1B-216/241					
1	.00000	.00000	11970.	.00000	.00000
2	. 19166	2294.3	11970.	.00000	-4520.4
3	.71390	7901.8	8271.7	-7082.2	1495.7
4	.96390	9550.4	5011.0	-5960.4	1484.3
5	1.2139	10454.	2309.1	-4847.2	1468.3
٤	1.4639	10751.	160.84	-3746.0	1490.2
7	1.7139	10580.	-1432.7	-2623.3	1482.3
8	2.6634	8119.6	-2414.8	1593.9	-558.25
9	3.5233	6866 . 7	-911.91	153.78	-10.873
10	7.9435	4920.6	-191.97	12.858	-,67267
11	12.882	4193.7	-113.64	2.6907	32131-01
12	49.539	•			

B-56 BRC 45-85

	I	T(I)	Y(I)	C(I+1)	C(1,2)	0(1,3)
R1B-243/	268					
	1 2 3 4 5 6 7 8 9	.00000 .40306 .47585 .79835 1.1208 1.3708 1.6208 2.0312 2.2962	.00000 6366.2 7491.9 10962. 12272. 12226. 11588. 10017. 9093.9	15795. 15795. 14803. 7064.7 1404.7 -1566.8 -3344.8 -3809.0	.00000 .00000 -13621. -10375. -7175.7 -4710.1 -2402.0 1270.8 1139.4	.00000 -62372. 3355.1 3304.5 3287.4 3077.5 2983.1 -165.38 -162.57
	10 11 12	4.5260 11.165 48.851	5887.2 4057.5	-514.16 -143.02	51.894 4.0113	-2.4042 50433-01
R2A-2857	/310					
	1 2 3 4 5 6 7 8 9 10 11 12	.00000 .42416 .50065 1.1607 1.8207 2.0707 2.2207 3.6048 5.4230 8.7354 18.977 49.546	.00000 5371.8 6333.3 12811. 15547. 15578. 15389. 11268. 8074.8 6054.4 3490.3	12645. 12645. 12382. 7121.3 1104.2 -845.27 -1613.3 -3002.4 -986.66 -390.88 -159.03	.00000 .00000 -3695.7 +4274.8 -4842.1 -3035.8 -1951.0 947.34 161.34 18.523 4.1139	.00000 +16106. +292.45 +286.49 2408.4 2410.7 697.97 +144.10 +14.372 +.46894 +.48391+01
R2A-383/	/4 08					
	1 2 3 4 5 6 7	.00000 .27221 .35221 .57679 .61521 .85114 .96237	.00000 4789.0 6163.9 9335.4 9834.2 12275.	17593. 17593. 16361. 13134. 12638. 9085.9	.00000 .00000 -15548. 1178.3 -14091. -966.33	.00000 -65423. 24827. 13246+06 18543. 11809+06

B-57 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(1,2)	0(1,3)
R2B-351/	377					
	1	.00000	.00000	16123.	.00000	.00000
	2	.36038	5810.6	16123.	.00000	-31700.
	3	.40886	6588.6	15901.	-4601.5	1275.9
	4	.57786	9150.6	14455.	-3954.6	-19373.
	5	.74686	11387.	11458.	-13777.	22083.
	٤	.91586	13034.	8 693.6	-2580.4	-34126.
	7	1.1930				
R28-438/	464					
	1	.00000	.00000	12863.	.00000	.00000
	2	.33854	4354.7	12863.	.00000	-16950.
	3	.45163	5784.9	12213.	-5751.0	-76.718
	4	.92163	10247.	6756.0	-5859.1	-94.990
	5	1.3916	12118.	1185.4	-5993.1	3143.3
	٤	1.6416	12089.	-1221.7	-3635.6	3131.6
	7	1.8916	11605.	-2452.4	-1286.9	982.60
	8	2.9318	8767.4	-1940.1	1779.4	-1306.2
	9	3.3409	8182.2	-1140.0	176.55	-12.476
	10	7.6397	5553.0	-313.73	15.654	37944
	11	19.298	3421.8	-103.45	2.3830	30890-01
	12	48.872				
R3A-401/	427					
	1	.00000	.00000	15481.	.00000	.00000
	2	.33875	5311.9	15681.	.00000	-58124.
	3	.42536	<i>6</i> 633.5	14418.	-14582.	4579.9
	4	.76036	9999.3	6189.8	-9979.6	4662.8
	5	1.0954	11128.	1073.3	-5293.4	4628.3
	٤	1.3454	11138.	-705.58	-1822.2	651.42
	7	1.5954	10858.	-1494.5	-1333.6	660.44
	8	2.6317	8611.8	-2130.8	719.65	-115.19
	9 .	4.4671	6412.9	-653.22	85. 383	-5.4545
	10	9.0242	4692.9	-214.97	10.787	28200
	11	19.571	3294.7	-81.543	1.8640	25512-01
	12	49.360				

B-58 BRC 45-85

I	T(I)	Y(I)	C(I.1)	C(1,2)	C(I,3)
R3B-239/265					
1	.00000	.00000	12855.	.00000	.00000
2	.47489	6009.6	12655.	.00000	1667 8≠06
3	.49773	6296.5	12394.	-11424.	3072.3
4	.85023	9380.4	5485.2	-8174.9	3151.1
. 5	1.2027	10436.	896.52	-4842.6	3048.7
±.	1.4527	10406.	-949.42	-2541.1	3124.8
7	1.7027	10058.	-1634.1	-197.49	248.93
, 8	2.8097	8345.0	-1156.2	629.20	-226.07
S	3.6426	7488.0	-578.54	64.374	-3.6827
The second secon	3.6426 8.6972	7633.0 5932.8	-210.03	8.5305	17475
10		4284.9	-77.990	1.8831	21884-01
11	21.377	4254.7	-//. 220	1.0001	.21001 01
12	49.168				
R3B-331/357					
i	.00000	.00000	13479.	.00000	.00000
2	.40757	5493.6	13479.	.00000	14541+06
3	.42843	5773.5	13289.	-9101.6	1822.9
4	.90093	10213.	5908.9	-6517.6	1846.7
5	1.3734	11745.	986.65	-3899.9	1820.5
ت د		11776.	-621.96	-2534.5	1836.7
	1.6234	11491	-1544.8	-1157.0	918.65
7	1.8734		-1918.0	557.00	-83.688
8	2.4954	10303.	-711.41	95.533	-5.1081
9	4.3732	8111.6	-239.43	9.1144	18287
10	9.3598	6057.6		1.8639	23413-01
11	22.580	4063.0	-94.269	1.5639	
12	49.133				
R48-398/423					
1	.00000	.00000	9221.5	.00000	.00000
ž	.56857	5244.0	9221.5	.00000	-49450.
3	.61213	5640.7	8941.3	-6447.1	1343.4
4	1.0671	8500.8	3908.9	-4613.3	1342.9
5	1.5221	9450.8	544.77	-2780.3	1351.0
ر د	1.7721	9434.3	-592.06	-1767.0	720.13
7	2.0221	9187.1	-1340.6	-1226.9	781.74
, 8	2.9074	7546.5	-1792.5	716.42	-150.62
5 9	4.2420	6072.3	-685.04	113.39	-8.7965
10	8.2890	4574.1	-199.44	6.5942	10332
11	24.453	2636.9	-67.247	1.5839	27255-01
12	48.902	2000.7	wir than tr		

B-59 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(I,2)	0(1,3)
R4B-358/384					
i	.00000	.00000	10795.	.00000	.00000
2	.49238	5315.1	10795.	.00000	14254+06
3	.51400	5547.1	10595.	-9247.3	2514.1
4	.90150	8410.3	4560.7	-6324.6	2488.3
5	1.2890	9372.7	780.06	-3432.0	2528.0
6	1.5390	9392.7	-461.94	-1536.0	570.61
7	1.6890	9290.8	-984.23	-1279.2	586.20
8	2.6265	7820.5	-1737.2	369.46	-34.399
9	5.7074	4969.4	-440.19	51.518	-3.3687
10	10.023	3758.4	-183.73	7.8994	19789
11	20.229	2495.6	-84.332	1.8403	22334-01
12	43.319	21750	0.0002		
R4B-420/446					
1	.00000	.00000	13412.	.00000	.00000
$\tilde{2}$.17819	2389.9	13412.	.00000	11141+06
3	.23107	3082.7	12480.	-17648.	51131.
4	.35275	4432.1	10457.	1016.9	-8296.4
5	.52964	6267.7	10038.	-3385.7	-3401.5
5	.98307	9233.4	6294.8	-7204.5	24241.
7	.99514	9882.5	5593.3	945.33	-10854.
e	1.2279	11099.	4269.1	-6635.0	2702.2
9	1.6096	11912.	384.93	-3540.6	-20727.
10	1.8423				
R5A-473/499					
1	.00000	.00000	11974.	.00000	.00000
2	.43578	5218.0	11974.	.00000	-20419.
3	.59064	699 6.4	10505.	-9485.7	2542.1
4	.93814	9608.1	4833.3	-6835.6	2537.7
Ė	1.2854	10549.	1001.9	-4190.1	2521.7
٤	1.5356	10597.	-620.30	-2298.8	2545.9
7	1.7856	10338.	-1292.3	-389.35	226.76
Ś	2.6949	9011.3	-1438.0	229.17	-16.839
9	6.3043	6014.9	-441.73	46.838	-2.8738
10	10.774	4719.5	-195.25	8.2999	16260
11	26.167	3087.6	-55.314	.79152	12573-01
12	49.761	= + · · ·		· + - =	

B-60 BRC 45-85

I	T(I)	Y(I)	C(1,1)	C(1,2)	C(I,3)
R5B-287/313					
1	.00000	.00000	17480.	.00000	.00000
2	.25682	4489.4	17480.	.00000	-35005.
3	.30206	5276.9	17266.	-4744.5	8672.2
4	.40642	7036.9	16559.	-2029.5	-52384.
5	.48320	8272.4	15312.	-14211:	6740.2
	.64100	10361.	11331.	-11020.	.10639+06
7	.70139	11029.	11164.	8254.7	-62271.
é	.84623	12630.	9635.7	-18805.	-,29050+06
9	.96393				
R5B-370/396					
1	.00000	.00000	12259.	.00000	.00000
2	.32394	3971.1	12259.	.00000	-12945.
. 3	.56556	6750.4	9991.5	-9383.5	2437.2
4	.83806	8825.7	5420.4	-7391.1	2178.9
5	1.1106	9798.0	1877.6	-5609.9	2314.2
٤	1.3606	9952.9	-493.41	-3874.3	2232.2
7	1.6106	9622.3	-2012.0	-2200.1	2276.0
·	2.2497	2031.8	-2035.1	2164.0	-1390.1
9	2.7409	7389.6	-915.36	115.77	-6.4488
10	8.1199	4811.8	-229.69	11.704 .	31598
11	18.634	3323.4	-88.364	1.7377	-,20550-01
12	49.961				
R7A-232/258					
1	.00000	.00000	8237.0	.00000	.00000
2	.80771	66 5 3.1	8237.0	.00000	-80472.
3	.84431	6950.6	7912.9	-8857.2	2654.8
4	1.0843	8376.3	4120.1	-6945.8	2656.1
5	1.3243	9001.7	1245.1	-5033.4	2722.9
خ	1.5743	9041.0	-761.03	-2991.2	2631.7
7		8704.9	-1763.2	-1017.5	748.78
8		7177.1	-2057.8	611.15	-84.494
9		4849.2	-633.61	111.83	-10.006
10	7.6629	3651.7	-227.12	17.467	61884
11	16.195	2604.1	-63.121	1.7543	23313-01
12	49.954				

B-61 BRC 45-85

I	т(1) Y(I) C((1,1)	0(1,2)	0(1,3)
	· ·					
R7A-295/321						
1	.00	000 .00	000 11	1932.	. 00000	.00000
2	.30	953 369	3.3 11	1932.	.00000 -	81122.
2 3	.36	909 438	7.7 1:	1096		9706.7
4		353 614	2.7 64	479.4 -	8313.9	4588.8
5	.98	475 772	0.4	969.6 -		438.62
٤	1.3	997 804	9.6 -45	58.55 -	3198.9	14743.
7	1.5	737 795	0.6 -20	32.44	4498.2 -	20741.
9	1.8	217				
R7B-175/201						
. 1	.00	.00	000 23	2998.	.00000	.00000
2	.20	911 480	9.1 20	2998.	.00000 -	.96069+06
3	.23	:036 528	9.7 2	1802	58760.	.28103+05
4		327				
R7B-440/466						
1	.00	.00	000 1	4 690.	.00000	.00000
		302 738	9.3 1	4690.	.00000 -	6718.4
2	.59	9866 878	8.4 1	4506	1925.5 -	3944.8
4		'820 138	01. 1			9656.2
E		242 143	109.			27,034
غ		582 180	46. E	412.2 -	5049.9 -	18439.
7		:258				

B-62 BRC 45-85

	1	T(I)	Y(I)	C(I,1)	C(1,2)	0(1.3)
- -						
RSA-305/3	31					
	1	.00000	.00000	11509.	.00000	.00000
	2	. 27706	3188.7	11509.	.00000	12650+06
	3	.30329	3488.3	11248.	-9955.5	2510.7
	4	.61329	6093.2	5799.2	-7620.6	2565.6
	5	.92329	7235.1	1814.2	-5234.3	2544.6
	6	1.8233	6483.1	-1424.0	1636.3	-990.32
	7	2.3233	6056 .4	-530.51	150.77	-24.639
	ė	2.5975	5921.8	-453.39	130.50	-24.798
	9	5.5440	5084.5	-330.23	-88.698	191.30
	10	5.8342	4985.8	-333.38	77.843	-9.5080
	11	8.4063	4481.6	-121.64	4.4767	60482-01
	12	49.013				
RSA-384/4	10					
	1	.00000	.00000	16696.	.00000	.00000
	2	.32792	5474.8	15696.	.00000	-21964.
	3	.39530	6593.1	16397.	-4434.7	-6521.4
	4	.66429	10554.	12596.	-9697.3	10810.
	5	.84489	12578.	10151.	-3840.6	- 23412.
	<u>د</u>	.98663	13873.	7651.0	-13796.	98852.
	7	1.0312	14196.	7010.4	-548.14	-13068.
	é	1.2377	15504.	5103.9	-8663.9	6576.6
	9	1.5764				
R8B-300/3	26					
	1	.00000	.00000	<i>6</i> 673.9	.00000	.00000
	2	.42013	2803.9	6673.9	.00000	-18751.
	3	.48669	3242.6	6424.7	-3744.2	734.34
	4	1.3367	6449.3	1651.2	-1871.7	732.80
	5	2.1867	69 5 0.6	57.708	-3.0328	-115.32
	દ	2.4367	6963.0	34.570	-89 .5 28	-121.89
	7	3.3107	6943.5	-401.25	-409.12	230.91
	်း	4.2467	6298.8	-560.24	239.26	-114.69
	9	4.8083	6039.4	-400.02	46.023	-3.124 8
	10	8.2496	5080.4	-194.28	13.763	56445
	11	14.867	4233.9	-85.284	2.5580	33687-01
	12	49.097				

B-63 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(I,2)	E(I,3)
RSB-483/50	09					
	1	.00000	.00000	13828.	.00000	.00000
	2	. 20898	2889.8	13828.	.00000	-54684.
	3	.23329	3225.2	13737.	-3866.6	751.57
	4	.59068	7675.1	11261.	-3060.8	-299.87
	5	1.0609	12263.	8183.4	-3483.8	240.55
	૯	1.8089	16535.	3375.5	-2944.1	1434.3
	7	2.3024	17656.	1517.6	-820.78	-1279.9
	8	2.4717	17883.	1129.7	-1470.9	662.31
	9	3.4310	18198.	136.23	435.26	-3364.5
1	10	3.7131				
R2C-196/22	23					
	1	.00000	.00000	10108.	-11288.	16462.
	2	.34526	2821.8	8200.1	5762.5	-5044.3
	3	.82276	7393.2	9568.9	-2895.9	-5970.1
	4	1.3003	10652.	2719.7	-11448.	7553.8
	5	1.5503	10735.	-1588.0	-5782.7	7403.6
	٤	1.8003	10092.	-3091.2	-229.97	489.37
	7	2.9205	7028.2	-1763.9	1414.7	-592.56
	ខ	3.6721	6250.0	-641.58	78.632	-4.2502
	9	8.7179	4468.7	-172.69	14.295	84260
1	10	13.399	3887.1	-94.257	2.4618	32331-01
:	11	49.990				
R2C-278/30	5					
	1	.00000	.00000	7768.9	.00000	.00000
	2	. 66880	5195.8	7768.9	.00000	-85523.
	3	. 69040	5362.8	7649.1	-5544.2	1204.9
	4	1.1579	7850.1	3255.3	-3854.3	1212.4
	5	1.6254	8453.5	446.44	-2153.9	1199.5
	6	1.8754	8649.2	-405.60	-1254.3	463.29
	7	2.1254	8476.6	-945.87	-906.80	462.75
	8	3.0368	7211.7	-1445.5	358.43	-40.387
	9	5.5577	5198.2	-408.47	52.997	-3.3265
	10	10.131	4120.3	-132.45	7.3550	19434
	1 1	22.967	3221.0	-39.692	12863	.19695-01
i	12	49.785				

B-64 BRC 45-85

ī	T(I)	Y(I)	C(I,1)	0(1,2)	0(1,3)
R2D-220/247					
1	.00000	.00000	10906.	.00000	.00000
2	.27280	2975.2	10906.	.00000	-49375.
3	.31217	3401.7	10678.	-5816.0	10828.
4	.50030	5275.4	9618.2	182.00	-9040.6
5	.79746	7912.4	7331.4	-7877.5	-500.56
હ	1.1023	9401.1	2389.1	-8335.3	47210.
7	1.2603	9756.8	3291.4	14046.	36868+06
8	1.3732				
R2D-334/371					
• 1	.00000	.00000	8249.9	-4304.6	5884.3
2 ,	.32427	2423.3	7315.1	1421.7	-2233.9
3	.90177	6691.6	6722.1	-2448.5	-2231.3
4	1.4793	9327.3	1661.6	-6314.2	3722 . 9
5	1.7293	9406.2	-797.49	-3522.0	3719.9
6	1.9793	9044.8	-1861.0	-732.12	462.67
ž	3.0773	6731.2	-1795.4	791.93	-173.46
9	4.4631	5299.5	-599.12	68 .17 5	-3.3823
9	10.429	3434.1	-146.89	7.6877	35343
10	14.869	2902.6	-99.521	2.9799	37506-01
11	49.959				
R4C-414/441				•	
1	.00000	.00000	10729.	.00000	.00000
2	.75713-01	812.32	10729.	.00000	-7260.0
3	.23246	2466.1	10194.	-3413.9	-300.12
4	.84246	7345.9	5693.8	-3963.1	-279.26
5	1.4525	9281.0	547.07	-4474.2	2764.6
6	1.7025	9181.4	-1171.7	-2400.7	2882.3
7	1.9525	8783.4	-1831.6	-239.01	248.20
8	3.0435	6823.0	-1466.8	573.35	-116.65
9	4.4254	5583.0	-550.48	89.738	-6.0914
10	9.2075	4336.6	-110.11	2.3499	.25179-01
11	11.907	4056.9	-96.871	2.5538	27488-01
12	48.897				

B-65 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(I,2)	C(I,3)
R4C-512/53	9					
	1	.00000	.00000	12704.	.00000	.00000
	2	.36582	4647.4	12704.	.00000	-28237.
	3	. 47555	6004.1	11684.	-9295.1	2160.8
	4	.92555	9576.6	4631.3	-6378.0	2179.5
	5	1.3755	10568.	215.13	-3435.6	2148.8
	6	1.6255	10440.	-1099.8	-1824.0	972.58
	7	1.8755	10067.	-1829.4	-1094.6	950.21
	8	2.4500	8834.5	-2146.3	543.08	-60.721
	9	5.0797	5841.9	-549.69	64.056	-3.8314
1	0	10.209	4190.7	-194.98	5.1042	78862-01
1	1	28.555	1844.4	-87.328	.76362	.10561
1	2	46.336				
R4D-495/52	2					
	1	.00000	.00000	8843.6	.00000	.00000
	2 .	.27951	2471.9	8843.6	.00000	-7477.7
	3	.45095	3950.3	8184.2	-3845.9	-390.69
	4	.87095	6680.3	4747.0	-4338.1	-383.62
	5	1.2909	7880.4	899.93	-4821.5	5096.5
	6	1.5409	7883.7	-555.23	-999.16	496.16
	7	1.7909	7690.1	-961.78	-627.03	497.14
	8	2.4653	6908.8	-1129.2	378.78	-63.574
	9	4.3387	5704.8	-379.37	21.489	.15235
1	.0	9.2109	4384.1	-159.12	23.716	-2.4221
1	. 1	11.911	4079.7	-84.027	4.0971	11304
- 1	P	33.501		•		
R&C-476/50	3					
	1	.00000	.00000	9453.7	.00000	.00000
	2	.63815	6032.9	9453.7	.00000	-14705.
	3	.77505	7289.4	8 627. 0	-6039.2	955.85
	4	1.1875	9887.5	4132.5	-4856.4	942.47
	5	1.6000	10832.	607.14	-3690.1	992.45
	6	1.8500	10769.	-1051.8	-2945.7	2044.2
	7	2.1000	10354.	-2141.4	-1412.6	2047.7
	8	2.4285	9570.4	-2406.6	605.16	-69.578
	9	4, 5425	6530.0	-780.82	163.90	-18.454
	10	7.1537	5280.0	-302.36	19.339	60769
-	1 1	16.468	3650.5	-100.27	2.3587	30350-01
. 1	12	49.905				

B-66 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(1,2)	C(I,3)
R7C-143/170					
· 1	.00000	.00000	9405.7	.00000	.00000
2	.57869	5443.0	9405.7	.00000	13630+06
3	.58603	5512.0	9383.7	-3001.4	21.119
4	1.3110	10746.	5064.9	-2955.5	19.704
Š	2.0360	12872.	810.54	-2912.7	1336.0
٤	2.2860	12913.	-395.29	-1910.7	1318.2
7	2.5360	12716.	-1103.5	-922.03	410.53
, 8	3.5346	11103.	-1716.8	307.75	-25.478
9	6.9163	7831.4	-509.47	49.274	-2.5924
10	11.994	6175.4	-209.58	9.7312	24669
11	22.732	4747.4	-84.850	1.8342	20295-01
12	47.881	7/7/•7	04.000		,,_,
1.4	47.001				
R7C-541/568					
1	.00000	.00000	1300%.	.00000	.00000
2	.25086	3263.4	13009.	.00000	-12550.
3	.36369	4713.1	12530.	-4248.1	-621.31
4	.83119	9578.8	8150.2	-5119.5	-587.39
5	1.2987	12210.	2978.3	-5943.4	-573.46
٠ ۵	1.5487	12574.	-100.91	-6373.4	4359.7
7	1.7987	12219.	-2470.2	-3103.6	4406.8
, 8	2.0986	11318.	-3142.7	861.47	-103.12
\$ 9	4.3425	7438.2	-834.25	167.27	-18.869
·	4.3423 6.9307	6072.4	-347.61	20.759	62248
10	16.425	4110.5	-121.76	3.0288	38002-01
11 12	49.814	4110.5	-121.76	3 · ()2/3/3	*COOOT 01
12	47.514				
R7D-223/250					
1	.00000	.00000	7938.9	.00000	.00000
2	.76177	6047.6	7938.9	.00000	-38348.
3	.78959	6267.6	7849.8	-3200.5	277.86
4	1.4621	10184.	3922.1	-2639.9	284.85
5	2.1346	11714.	757.92	-2065.2	906.26
٤	2.3846	11789.	-104.78	-1385.5	1148.0
7	2.4746	1:769.	-326.29	-1075.6	342.08
, 8	3.7157	10361.	-1415.4	198.10	-13.286
9	7.2926	7224.9	-508.15	55.532	-3.8575
10	10.945	5921.6	-256.87	13.260	33936
11	21.556	4283.6	-90.090	2.4579	39452-01
12	48.930	7200,0	70.070	4.79 //	, wy (was 012
1.4	43.730				

B-67 BRC 45-85

r	T(I)	Y(I)	C(I,1)	C(I,2)	0(1,3)
R7D-312/339					
1	.00000	.00000	10894.	-4959.2	16840.
2	.11484	1211.3	10422.	842.66	-1854.1
3	.84 984	8589.3	8652.1	-3250.0	-1849.0
4	1.5848	12459.	878.03	-7327.0	5254.7
5	1.8348	12302.	-1800.2	-3386.0	5155.1
ઠ	2.0848	11721.	-2526.6	480.34	-39.679
7	2.4787	10798.	-2166.8	433.46	-39.382
8	4.8014	7610.5	-790.55	159.04	-16.150
9	7.8136	6230.8	-272.07	13,094	30873
10	19.443	4352.1	-92.777	2.3230	31767-01
11	50.045			•	
R9A-445/482					•
. 1	.00000	.00000	8608.1	.00000	.00000
2	.51123	4400.7	8608.1	.00000	-29070.
3	.58816	5049.7	8092.0	-6708.5	1627.3
4	1.1232	7708.0	2311.2	-4096.7	1622.8
5	1.6582	8020.4	-678.76	-1492.1	829.52
ర	1.9082	7770.4	-1269.3	-869.92	844.49
7	2.1582	7411.9	-1545.9	-236.55	216.72
8	3.1812	5814.9	-1349.5	428.55	-71.233
9	4.7190	4494.1	-536.79	99.916	-11.757
. 10	6.7475	3718.2	-276.56	28.367	-1.6571
11	11.773	2834.4	-117.00	3.3832	-,42468-01
. 12	49.763				
R98-329/356		•			•
1	.00000	.00000	14997	.00000	.00000
2	.19047	2854.5	14997.	.00000	3945a+0&
3	.21750	3254.6	14176.	-31189.	.10131+06
4	.34312	4744.0	11136.	6991.6	-47892.
5	.43860	5829.2	11161.	-6726.0	6730.2
6	.56422	7138.5	9789.8	-4189.5	14588.
7	.70593	8483.2	9481.2	2012.0	-65730.
8	.89587				

B-68 BRC 45-85

. 1	T(I)	Y(I)	C(I,1)	C(1,2)	0(1,3)
R9C-332/359					
1	.00000	.00000	7337.4	.00000	.00000
2	. 59555	4369.7	7337.4	.00000	-20008.
3	. 66254	4855.3	7067.9	-4021.5	676.08
4	1.2025	7605.8	3316.2	-2926.2	671.77
5	1.7425	8649.0	743.57	-1838.0	480.08
٤	1.9925	8727.6	-85.388	-1477.9	454.78
7	2.2425	8621.0	-739.06	-1136.8	467.16
8	3.3868	6986.8	-1505.7	463.81	-85.430
9	4.6330	5670.0	-740.19	147.40	-14.717
10	7.4114	4435.7	-261.93	24.733	-1.1605
11	13.970	3454.4	-87.253	1.9008	21187-01
12	49.998				
R9D-249/276					
	****	00000	6/36 7	.00000	.00000
1	.00000	.00000	8628.7	.00000	-27198.
. 2	.54229	4679.3	8628.7 8430.0	-4026.6	129.74
3	.59164	5101.8		-3832.9	123.04
4	1.0891	8315.1	4519.9	-3649.3	2007.7
5	1.5866	9630.3	797.54 -650.67	-3649.3 -2143.5	2056.5
. 6	1.8366	9632.9		-1218.1	565.57
7	1.9866	9494.0	-1154.9 -1908.2	453.48	-46.144
9	2.9718	7714.7	-461.40	73.170	-9.2132
9	5.7191	4938.1	-273.66	12.829	33085
10	7.9022	4183.7	-129.42	4.6280	40953-01
11	16.165	2611.8	-127.42	7.0200	,00,00
12	49.877		•		
R10A-269/296					
1	.00000	.00000	11899.	.00000	.00000
$\frac{1}{2}$. 14121	1680.3	11899.	.00000	-14727.
3	.20416	2425.7	11724.	-2781.0	-408.37
4	.93416	9343.5	7011.0	-3675.4	-405.58
5	1.6642 •	12345.	996.59	-4563.6	2448.7
હ	1.9142	12347.	-826.07	-2727.1	2482.6
7	2.1642	12009.	-1724.1	-865.14	538.11
	3.1763	9935.8	-1821.7	768.71	-165.39
9	4.6076	8418.2	- 637.66	58.512	-2.4154
10	11.858	5950.2	-170.13	5.9769	97364-01
11	31.005	4200.5	-48.329	.38406	.12179-02
12	50.044				

B-69 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	0(1,2)	C(I,3)
			** ** ** ** **			
R10B-274/3	01					
	1	.00000	.00000	11715.	.00000	.00000
	2	.24892	2916.1	11715.	.00000	-84243.
	3	.26206	3069.8	11671.	-3320.3	-256,21
	4	.99706	9752.7	6375.2	-3885.2	-259.12
	5	1.7321	12237.	243.98	-4456.6	2904.2
	6	1.9821	12065.	-1439.8	-2278.4	2943.9
	7	2.2321	11608.	-2027.0	-70.498	181.85
	8	3.2861	9606.4	-1569.5	504.51	-79.915
	9	5.2205	7879.6	-514.80	40.735	-1.6019
1	10	11.815	5796.8	-186.54	9.0424	31877
1	1	18.285	4882.1	-109.56	2.8555	34683-01
1	12	48.472				
R100-445/4	172					
	1	.00000	.00000	13794.	.00000	.00000
	2	.27464	3788.2	13794.	.00000	-44595.
	3	.34761	4777.6	13085.	-9738.8	4895.O
	4	.66881	8204.1	8962.5	-3095.0	-35444.
	5	.77391	9070.5	7130.5	-14334.	40178.
	6	.80699	9292.1	6314.2	-10347.	750P.O
	7	1.0581	10344.	2537.9	-4690.2	-4416P.
•	ខ	1.2112				
R10D-231/2	253					
	1	.00000	.00000	10988.	.00000	.00000
	2	.76532-01	840.97	10988.	.00000	-4611.6
	3	.26207	2850.3	10512.	-2566.9	-445.66
	4	.93207	8606.8	6470.9	-3464.7	-447.07
	5	1.6021	11253.	1226.1	-4363.3	1594.0
	٤	1.8521	11311.	- 6 56.65	-3167.9	1572.0
	7	2.1021	10974.	-1945.8	-1988.9	1583.1
	8	2.7110	9408.7	-2606.9	903.25	-144.74
	9	4.5342	6781.0	-756.74	111.58	-7.9788
;	10	8.6160	5008.6	-244.62	13.880	43214
	1 1	18.195	3559.3	-97.652	1.4624	14985-01
	12	49.957				

B-71 BRC 45-85

STRAIN RATE = (10E-3)/SECTEMPERATURE = -20°C

B-73 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(1,2)	C(1,3)

R1C-127/154					
1	.00000	.00000	15424.	.00000	.00000
2	.20742	3199.2	15424.	.00000	14299+06
3	.24842	3821.9	14709.	-17509.	50391.
4	. 45492	£556.4	13924.	13708.	-46173.
5	.66142	9609.7	13679.	-14896.	30937.
٤	.86792	12072.	11484.	4269.3	-13438.
7	1.2522	16353.	8811.7	-11223.	92984.
8	1.3207	16933.	8582.3	7873.1	-44615.
9	1.6196				Caracteristics
R1D-153/178					
i	.00000	.00000	17526.	.00000	,00000
	. 26357	4619.3	17526.	.00000	-18774.
2 3	.37483	6543.9	16839.	-6219.0	15457.
4	. 45373	7841.4	16147.	-2560.3	-3082.1
5	.64540	10821.	14825.	-4332.6	43965.
ě	. 73566	12156.	15118.	7572.4	18059+06
7	.76407	12587.	15111.	-7816.2	11147.
8	.97973				
R2C-129/156					
1	.00000	.00000	9968.2	.00000	.00000
	.95951	9564.6	9968.2	.00000	-2054.3
2	1.1756	11699.	9888.0	-1314.2	-1197.9
4	1.4763	14460.	8573.0	-2394.6	1465.5
5	1.7769	16861.	7530.6	-1072.8	-4198.8
Á	2,2699				

B-74 BRC 45-85

	1	T(I)	Y(I)	C(1,1)	C(I,2)	C(I,3)
_						
R2D-095/1	22					
	1	.00000	.00000	15185.	.00000	.00000
	2	42113	6395.0	15185.	.00000	-36491.
	2 3	.46863	7112.7	14950.	-5076.6	32.327
	4	.77716	11243.	11827.	-5046.6	-2864.1
		1.0104	13491.	9004.7	-7051.2	-338.85
	5 6	1.0782	14268.	8044.9	-7120.2	1046.1
	7	1.3415				
	,	1.3413				
R4D-198/2	:25					
			****	100/5	.00000	.00000
	i	.00000	.00000	13065. 13065.	.00000	11786+06
	2 3	.71293	9314.8	12741.	-10372.	26094.
	3	.74238	9696.6		2886.7	-15666.
	4	.91175	11687.	11493.	2000.7	10000.
	5	1.1895				
R6A-531/5	558	•				
		.00000	.00000	18705.	.00000	.00000
	1 2	.28760	5379.5	18705.	.00000	33034+06
	4 3	.29910	5594.1	18574.	-11397.	2191.2
	4	.89660	13091.	7301.7	-7458.9	2193.2
	5	1.4941	15255.	725.30	-3537.6	1044.2
	5 6	1.7441	15231.	-847.71	-2754.4	1029.5
	_		14863.	-2031.9	-1982.3	1037.0
	7	1.9941 2.8800	12228.	-3102.6	773.71	-79.976
	9	2.8800 5.4626	7998.6	-706.54	154.09	-35.717
		5.4626 6.5374	7372.8	-499.09	38,923	-1.4445
	10	6.5374 14.566	5126.2	-153.81	4.0844	55343-01
	11	47.904	3120.2			
	1 4	4 / x 7U4				

B-75 BRC 45-85

	ı	T(I)	Y(I)	C(I,1)	C(1,2)	0(1.3)
			ways waster sparts make states		~~~	
R6C-134/1	61					
		****	00000	4.44.657	.00000	.00000
	1	.00000	.00000 5418.1	14187. 14187.	.00000	-7939.5
	2	.38191	5418.1 8344.6	13132.	-5012.0	1284.4
	3 4	.59341	10928.	11171.	-4190.8	-1028.1
		.80654 1.2321	14844.	7044.9	-5503.4	-7561.6
	5	1.2321	15565.	5493.4	-8092.1	15693.
	٤	1.3463	13385.	3473.4	-0072.1	10020.
	7	1.5823				
R70-092/1	19			•		
	1	.00000	.00000	15162.	.00000	.00000
	2	.59584	9034.1	15162.	.00000	-98618.
	3	.60749	9210.6	15122.	-3448.2	-636.72
	4	1.4375	19022.	8082.0	-5033.6	568.28
	5	2.0735	22272.	2368.5	-3949.2	37.943
	ب	2.5299	22534.	-1212.8	-3897.3	848.92
	7	2.9834	21261.	-4224.7	-2741.9	2082.7
	é	3.6311	17942.	-5156.0	1303.6	-133.45
	9	6.5724	10658.	-950.79	126.11	-10.408
	10	11.848	7624.2	-489.20	-38.623	466.72
	11	12.398	7421.1	-107.30	732.25	-213.05
	12	16.437				
R7D-036/0	063				•	
		00000	.00000	13503.	.00000	.00000
	1	.00000 .33875	4574.1	13503.	.00000	-17867.
	2	.35734	4825.1	13489.	-881.14	-6323.3
	3	.33734 .56369	7515.4	12317.	-4795.3	26855.
	4 5	.56369	8302.4	12034.	436.49	-2967.2
	ت د	1.1649	14424.	9942.2	-4337.8	17780.
	7	1.2299	15057.	9603.8	-874.27	-3400.9
	ر ج	1.5305	17767.	2101.8	-4121.8	706.50
	9	1.8966	20215.	5368.1	-3345.9	-1371.3
	10	2.3241	202101	0000.1		
	10	4.0271				

B-76 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(1,2)	C(1.3)
•.						
R9A-07	1/098					
	1	.00000	.00000	10160.	.00000	.00000
	2	.31759	3226.8	10160.	.00000	-1505.5
	3	.48565	4927.3	10033.	-759.08	-912.80
	4	1.5047	13397.	5641.9	-3549.7	-186.02
	5	2.5238	15263.	-2172.5	-4118.4	3441.8
	ے د	2.8210	14344.	-3708.5	-1049.5	1385.1
			12906.	-3918.1	479.86	358.66
	7 8	3.1891 3.7342	10971.	-3075.2	1066.4	-179.52
	9	3.7342 5.2381	8147.5	-1085.7	256.45	-33.771
	-		6727.8	-464.27	52.970	-4.3987
	10	7.2465	5495.7	-265.49	13.517	46847
	11	10.236	3673.7	-200.47	10.017	. ,
	12	26.146				
R9B-07	6/103					
	· 1	.00000	.00000	9437.1	-1768.9	965.34
	2	.44817	3961.0	8433.2	-471.04	-588.11
	ŝ	1.3682	10863.	6073.2	-2094.2	-591.76
	4	2.2882	14217.	717.20	-3727.5	890.93
	5	2.5382	14177.	-979.48	-3059.3	869.52
	6	2.7882	13755.	-2346.1	-2407.1	1516.3
	7	3.5493	11243.	-3375.1	1055.3	-134.73
	é.	5.9819	7337.7	-632.95	72.002	-3.7883
	9	11.638	5375.6	-182.02	7.7186	19082
	10	37.777	2483.5	-169.64	-7.2448	.90772
	11	49.938	2400.0	10,10.	, , , , , ,	
		47.730				•
R9C-04	9/076					•
	1	.00000	.00000	11624.	.00000	.00000
	2	.43356	5039.8	11624.	.00000	-70148.
	3	.44374	5158.1	11602.	-2143.1	-127.23
	4	1.4087	14244.	7110.8	-2511.5	-132.06
	5	2.3737	18649.	1894.7	-2893.8	-102.00
	٤	2.6237	18940.	428.70	-2970.3	-147.65
	7	2.8737	18859.	-1084.1	-3081.0	970.63
	9	4.3687	13596.	-3788.3	1272.2	-190.63
	9	6.1705	9785.2	-1060.3	241.86	-32.215
	10	8.2007	8360.0	-476.56	45.655	-2.2018
	11	14.510	6617.6	-163.41	3.9784	57510-01
	12	49.849		-		
	* 4	42.042				

B-77 BRC 45-85

	I	T(I)	Y(I)	C(1,1)	C(1,2)	0(1,3)
R9D-15	0/177	•				
	1	.00000	.00000	16460.	.00000	.00000
	2	.35467	5838.1	16460.	.00000	-64074.
	3	.38450	6327.3	16289.	-5733.3	499.82
	4	1.3370	17073.	6727.8	-4305.1	490.38
	5	2.2895	19999.	-138.70	-2903.8	-633.90
	6	2.5395	19773.	-1709.5	-3379.3	-705.46
	7	2.7895	19124.	-3531.4	-3908.4	1848.4
	8	4.1772	11637.	-3700.4	3786.6	-1561.4
	9	5.0328	10264.	-649.86	-221.36	147.74
	10	5.6624	9804.4	-752.92	57.663	-1.9093
	11	15.106	6228.6	-174.67	3.5718	35090-01
	12	49.805				
R10A-2	38/265					
	1	.00000	.00000	11110.	.00000	.00000
	2	.54192	6020.5	11110.	.00000	-658.70
	3	.61657	6849.5	11099.	-147.06	-1151.5
•	4	1.1672	12724.	9889 .4	-2049.1	-373.78
	5	1.7178	17486.	7292.8	-2666.6	139.72
	6	2.2684	20716.	4483.4	-2435.8	171.78
	7	3.1981	22917.	399.99	-1956.7	253.83
	8	3.7407	22598.	-1499.2	-1543.5	984.45
	9	4.2727				
R108-0	84/111					
	1	.00000	.00000	17492.	.00000	.00000
	2	.80459-01	1410.8	17492.	.00000	-8270.4
	3	.30241	5199.4	16272.	-5501.8	359.01
	4	1.1524	15276.	7696.7	-4586.3	359.60
	5	2.0024	18725.	679.37	-3669.3	1452.7
	٤	2.2524	18688.	-882.91	-2579.8	1460.7
	7	2.5024	18329.	-1898.9	-1484.2	512.44
	é	4.1191	13545.	-2679.9	1001.1	-213.29
	5 9	5.3895	11319.	-1168.9	188.21	-15.398
	10	8.7778	8920.2	-423.83	31.688	-1.4869
	11	14.852	7181.7	-203.44	4.5920	83884-01
	11	49.842	/101./	200, 17		•
	12	77.074				

B-78 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(I+2)	0(1,3)
			1 4		
R1C-349/375	i				
1	.00000	.00000	19693.	.00000	.00000
2		4557.1	19693.	.00000	-74804.
Ś		5357.4	19338.	-8925.9	-1651.3
4		7642.7	17018.	-9548.3	3366.7
		13904.	10252.	-4778.4	-582.25
ĕ		15235.	8891.8	-5012.7	-4574.2
7		17577.	3481.5	-9968.5	22611.
é		18043.	2169.7	3222.7	-76763.
5		,			
R10-384/410))				
	00000	.00000	17297.	.00000	.00000
1 2		2964.9	17297.	.00000	17383+06
<u>.</u>	17142	3182.1	17215.	-6531.8	-14842.
4		4699.0	15634.	-10628.	41349.
5		5749.5	14757.	-1997.1	-9514.5
·		9404.3	11593.	-9711.8	37299.
7		10309.	10753.	-544.70	-11840.
		11870.	9789.5	-5873.9	10171+06
9	-	113,30	,,,,,,,		
R1D-179/206	,		•		
1	.00000	.00000	14819.	.00000	.00000
		7170.6	14819.	.00000	-15620.
3	.50060	7418.2	14806.	-779.65	-20000.
Ž		8154.1	14578.	-3780.0	2095.5
5		12307.	12857.	-1863.1	-1633.4
ě		15258.	11683.	-3036.9	3595.7
7		17616.	10883.	-765.81	-13004.
é	• •				

B-79 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(I,2)	C(1.3)
R1D-285/312			•		
1	.00000	.00000	21439.	.00000	.00000
2	. 24995	5358.8	21439.	.00000	-50981.
3	.35286	7509.7	19823.	-15722.	.13772+06
4	. 40695	8557. <i>7</i>	19331.	6626.1	-40693.
5	.55720	. 11474.	18566.	-11716.	30674.
٤	.70745	14103.	17123.	2110.1	-18037.
7	. 95386	18180.	14877.	-11223.	83284.
8	1.1041				
R2C-226/253					
1	.00000	.00000	10609.	.00000	.00000
2	.83647	2873.8	10609.	.00000	-5103.6
3	.97889	10370.	10298.	-2180.5	-571.60
4	1.6764	16298.	6422.0	-3376.6	-586.86
5	2.3739	18936.	855.20	-4604.6	1474.2
٤	2.6239	18885.	-1170.7	-3498.9	1405.9
7	2.8739	18395.	-2656.5	-2444.5	1436.7
8	3.6134	15675.	-3914.8	743.09	-56.499
9	7.6515	8263.4	-677.26	58.652	-2.5959
10	13.914	5884.8	-248.08	9.8847	16915
11	33.728	3334.3	-55.590	17016	.56329-01
12	49.804				
R2C-310/337					
1	.00000	.00000	8497.4	.00000	.00000
2	.56881	4947.2	8697.4	.00000	-11870.
3	. 63354	5506.9	8548.2	-2304.9	-8.7090
4	1.7917	12302.	3174.1	-2335.2	446.11
5	2.6654	13590.	115.22	-1165.9	293.68
6	3.7835	12672.	-1390.5	-180.95	-1440.2
7	3.8547	12572.	-1438.1	-488.65	248.56
8	4.8024	10981.	-1694.6	218.04	-11.461
9	12,029	5796.8	-338.81	-30.434	69.620
10	14.072	5571.2	408.42	396.31	-3996.2
11	14.208	5624.0	294.02	-1236.3	485.71
12	16.379				

B-80 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(1,2)	0(1,3)
				-	
R2D-265/292					
i	.00000	.00000	11546.	.00000	.00000
2	.61301	7078.0	11546.	.00000	-16119.
3	.77420	8874.8	10330.	∽ 7670.7	39738.
. 4	.83913	9524.1	9836.3	70.663	-3497.8
5	1.1398	12392.	8930.4	-3083.9	312.93
6	1.6049	15910.	6264.9	-2647.3	78.960
7	1.9334				
R2B-406/433					
	00000	.00000	9040.9	.00000	.00000
1	.00000	7284.9	9040.9	.00000	11201+06
2	.80577 .81529	7370.8	9010.5	-3196.1	119.14
3		12314.	4505.3	-2933.4	120.94
. 4	1.5503 2.2853	14089.	389.28	-2666.7	900.85
5	2.5353	14034.	-775.16	-1991.1	912.52
6	2.5353 2.7853	13730.	-1599.6	-1304.7	577.65
7 8	2.7553 3.8313	11288.	-2437.1	506.03	-48.917
ម 9	6.4921	7464.2	-783.22	115.57	-9.8071
The second secon	9.9585	5729.4	-335.53	13.580	23370
10	29.625	2605.5	-72.542	20755	.39238-01
11 12	49.815	20.000			
R4C-482/509					•
K45-452/30/					AAAAA
1	.00000	.00000	13422.	.00000	.00000
2	.56178	7540.3	13422.	.00000	-17184.
3	. 65799	8816.3	12945.	-4960.4	331.25
4	1.3655	15609.	6423.2	-4257.4	335.16
Ś	2.0730	18141.	902.39	-3546.0	2138.3
6	2.3230	18179.	-469.66	-1942.2	491.37
7	2.5730	17947.	-1348.6	-1573.7	491.98
Ś	4.0319	14158.	-2799.0	579.57	-53.546
9	6.9780	9573.1	-778.34	106.31	-7.8102
10	10.838	7703.5	-306.77	15.869	40720
11	22.351	5653.7	-103.29	1.8050	17558-01
12	48.813				
*-					

I	T(I)	Y(I)	C(I,1)	C(1,2)	0(1,3)
		with mate state state above		*** *** *** ***	
R4C-543/570			•		
1	.00000	.00000	9995.6	.00000	.00000
2	.20195-01	201.86	9995.6	.00000	-306.61
3	.52418	5200.2	9761.9	-463.58	-719.77
4	1.5642	14042.	6462.2	-2709.3	74.345
5	2.6042	17915.	. 1068.1	-2477.3	-3527.9
٤	2.8542	17973.	-832.02	-5123.2	2771.3
7	3.1042	17488.	-2874.0	-3044.7	2789.2
8	3.5403	15886.	-3938.1	604.99	32.495
9	4.6385	12334.	-2491.8	712.05	-108.99
10	6.4343	9524.5	-988.83	124.88	-7.7093
11	11.328	6772.7	-320.46	11.702	19697
12	44.104				
R4D-392/409					
. 1	.00000	.00000	10095.	.00000	.00000
2	.19895	2008.4	10095.	.00000	-693.95
3	.80075	7932.3	9340.9	-1252.9	-415.84
4	1.7158	15112.	6003.7	-2394.4	-413.74
5	2,6308	18284.	582.86	-3530.1	1999.6
6	2.8808	18240.	-807.26	-2030.4	2025.7
7	3.1308	17943.	-1442.6	-511.10	111.69
8	3.6204	17127.	-1862.8	-347.02	111.60
9	5.6329	12982.	-1903.7	326.74	-25.879
10	9.3245	9005.6	-549.25	40.136	-1.4367
11	17.473	6417.7	-181.33	5.0148	74296-01
12	49.866		•		
R4D-414/441					
1	.00000	.00000	18363.	.00000	.00000
2	.22846	4195.3	18363.	.00000	-78332.
3	.22854	4196.7	18363.	-1.5284	-14896.
4	.42916	7760.4	16564.	-8967.2	632.97
5	.62979	10728.	13042.	-8586.2	9778.6
દ	.83041	13078.	10778.	-2700.7	-10024.
7	1.1374	15842.	6285.3	-11933.	23066.
8	1.3601				

B-82 BRC 45-85

	I	T(I)	Y(I)	C(I,1)	C(1,2)	C(I,3)
R4D-525/	/5 52					
		.00000	.00000	11146.	.00000	.00000
	1	.27825	3101.4	11146.	.00000	-31 757.
	2 3	.29870	3329.1	11107.	-1923.3	313.13
	ت 4	.59933	4502.9	10036.	-1640.9	-437.92
	. 5	1.2374	12125.	7406.7	-2479.2	-3909.2
	٤ .	1.4551	13579.	5772.0	-5031.6	12602.
	7	1.5423	14084.	5142.5	-1509.0	-1102.2
	é	2.1145	16323.	2393.7	-3381.2	6222.4
	9	2.2949	.0020			
R6C-559	/EG/					
ROU-DOY	/ 350					
	1	.00000	.00000	13111.	.00000	.00000
	\hat{z}	. 22896	3002.0	13111.	.00000	-26133.
	3	.26104	3421.8	13031.	-2515.3	-221.60
	4	1.3360	14248.	6854.4	-3230.0	225.56
	Ś	2.4110	18164.	691.93	-2502.6	-80.653
	6	2.6610	18179.	-574.48	-2563.1	-103.58
	· 7	2.9110	17873.	-1875.4	-2640.7	1297.3
	é	3.8041	15014.	-3488.2	834.87	-83.273
	9	6.4630	9984.6	-920.70	130.74	-12.757
	10	8.4980	8544.9	-547.07	52.862	-2.9173
	11	13.814	6692. 4	-232.37	6.3410	86018-01
	12	48.036				
R70-457	/484					
•		****	.00000	10661.	.00000	.00000
	1	.00000	10838.	10661.	.00000	-35104.
	2	1.0166	11151.	10570.	-3095.2	131.33
	3	1.0460	17895.	5675.6	-2766.2	131.73
	4	1.8810	20782.	1331.5	-2436.3	596.52
	5	2.7160	20732.	225.19	-1988.9	609 . 25
	<u>د</u>	2.9660 3.2160	20913.	-655.02	-1531.9	320.35
	7	3.2180 4.6160	17873.	-3060.8	-186.47	346.22
	9	4.8180 5.2792	15862.	-2851.3	502.35	-37.862
	10	9.3634	10017.	-642.61	38.448	-1.1430
	_	19.478	6267.7	-215.66	3.7657	52005-01
	11 12	49.926	0,207.7			
	14	47.720				

B-83 BRC 45-85

I	T(I)	Y(I)	C(I,1)	C(I,2)	0(1,3)
				~~~~	
R7C-572/599					
1	.00000	.00000	13295.	.00000	.00000
2	.21366	2840.6	13295.	.00000	-50299.
3	.22049	2931.4	13289.	-976.66	1092.1
4	.39791	5264.4	13045.	-395.36	-1447.8
5	.76103	9879.9	12185.	-1972.5	7 <b>-5</b> 88.26
6	1.5754	18177.	7802.4	-3409.6	346.42
7	1.9036	20383.	5676.2	-3068.5	-2932.1
. 8	2.1794	21654.	3314.1	-5494.9	7085.1
9	2.3243	22040.	2167.8	-2414.5	-2235.7
10	2.8091				
R7D-254/281					
1 .	.00000	.00000	8822.9	.00000	.00000
2	.88542	7812.0	8822.9	.00000	-24618.
3	.91784	8097.2	8745.3	-2394.9	73.209
4	1.8553	14251.	4447.8	-2189.0	94.898
5	2.7928	16575.	593.62	-1922.1	513.35
દ	3.0428	16612.	-271.18	-1537.1	507.39
7	3.8064	15734.	-1731.0	-374.86	253.84
é	4.5766	14299.	-1838.8	234.83	-15.519
9	7.3944	10635.	-885.11	103.64	-5.8033
10	12.661	8000.6	-276.31	11.948	25348
11	26.501	5793.3	-91.233	1.4242	.19753-01
12	49.858	0,,,,,,			
R7D-546/5 <b>7</b> 3					•
* 1	.00000	.00000	12052.	.00000	.00000
2	.21371	2575.7	12052.	.00000	-1673.9
3	.50782	6077.6	11618.	-1476.9	-573.61
4	1.4803	15451.	7117.5	-3150.4	-580.68
5	2.4528	18860.	-657.49	-4844.5	3447.3
ر د	2.7028	18446.	-2433,4	-2259.0	3385.0
7	2.7528	17750.	-2928.2	279.74	-3.2418
é	3.4429	16382.	-2656.4	274.98	-3.2595
9	5.1974	12550.	-1721.5	257.82	-16.690
10	9.9817	2387.0	-400.69	18.261	43738
11	20.551	5675.6	-161.25	4.3932	69699-01
* *	20.001	~~.~~		· · · - <del>-</del>	

B-84 BRC 45-85

	1	T(I)	Y(I)	C(I,1)	C(1,2)	C(1,3)
-						
R9A-424/4	51				•	
	1	.00000	.00000	11926.	.00000	.00000
	2	.49370	5887.7	11926.	.00000	-20042.
	3	.59830	7112.7	11276.	-6252.5	3551.6
	4	.82931	9427.5	8955.4	-3791.1	19893.
	5	.91588	10187.	8746.3	1375.3	-20339.
	6	1.0614	11427.	7853.7	-7507.1	7448.9
	7	1.4962	14035.	5550.0	2208.7	-87703.
	ė	1.6241				
R9B-417/4	44					
	•	.00000	.00000	10820.	.00000	.00000
	1	.27414	2986.1	10820.	.00000	-32293.
	2	.33739	3642.9	10453.	-5959.2	8504.5
	4	.66301	6708.6	9277.7	2348.7	-6360.0
	5	.98864	9759.1	8784.2	-3864.3	2201.4
	દ	1.4813	13412.	6579.6	-610.83	-2147.1
	7	1.8952	15878.	4970.4	-3276.9	1690.7
	ė	1.9655	16212.	4534.5	-2920.2	<b>-4</b> 36.07
	9	2.4995				
R9C-507/5	534					·
	1	.00000	.00000	14191.	.00000	.00000
	2	.28820	4090.0	14191.	.00000	-24625.
	3	.33186	4707.5	14051.	-3225.0	-409.52
	4	1.1569	. 13874.	7893.2	-4238.6	-412.54
	5	1.9819	17270.	57.182	-5259.6	2337.8
	٤	2.2319	16992.	-2134.3	-3506.3	1773.8
	7	2.4819	16267.	-3554.8	-2175.9	1757.4
	ė	3.1503	13443.	-4108.1	1348.1	-189.81
	9	5.0559	9196.7	-1038.1	262.94	-39.675
	10	6.8977	7928.9	-473.28	43.724	-1.8715
	11	13.900	6116.1	-136.24	4.4086	64839-01
	12	49.862				

B-85 BRC 45-85

	1	T(I)	Y(I)	C(I,1)	C(I,2)	C(1,3)
R9D-348/37	5					
	1	.00000	.00000	57896.	.00000	.00000
	2	.61571-01	3564.7	57896.	.00000	10446+08
	3	.69371-01	4011.7	56095.	23756+06	.27827+07
	4	.10310	5740.1	49568.	43976.	78727+06
	5	.19362	10004.	38175.	16982+06	.23075+07
	٤	.22025	10943.	34039.	14487.	.24923+06
	7	. 27664	12954.	38052.	56656.	94038+07
	S	.29468	13603.	30918.	45216+06	.53001+07
	9	.35337				
R10A-407/4	34			•		
	1	.00000	.00000	10017.	.00000	.00000
	2	.67403	6751.6	10017.	.00000	-15095.
	3	.69667	6978.2	9993.6	-1025.0	-621.75
	4	1.6117	14788.	6556.2	-2731.7	-250.75
	5	2.5267	18308.	927.46	-3420.0	1545.7
	6	2.7767	18350.	-492.72	-2260.7	753.02
	7	3.0267	18097.	-1481.9	-1696.0	752.20
	9	4.0839	15524.	-2545.7	689 <b>.</b> 69	-126.09
	9	5.1662	13417.	-1495.9	280.28	-26.339
	ó	7.9568	10852.	-546.99	59.768	-4.4782
_	1	11.837	9368.2	-285.44	7.6436	92936-01
_	2	48.827				
R108-449/4	76					
	1	.00000	.00000	11552.	.00000	.00000
	2	.73718	8515.6	11552.	.00000	-15593.
	3	.79651	9197.7	11387.	-2775.5	-478.26
	4	1.4690	15455.	7005.0	-3740.4	-479.90
	5	2.1415	18328.	1323.0	-4708.6	1241.2
	6	2.3915	18384.	-798.56	-3777.7	1265.3
	7	2.6415	17968.	-2450.2	-2828.8	1252.2
	8	3.7829	13348.	-4013.6	1459.0	-236.00
	9	5.3678	9712.2	-1167.4	336.87	-55.483
1	Ó	7.1226	8401.1	-497.69	44.781	-2.0386
	1	13.820	6464.3	-172.18	3.8248	41906-01
	2	49.902				

B-86 BRC 45-85

I	T(I)	Y(I)	C(1,1)	C(1,2)	C(I.3)
R10C-506/533					
1	.00000	.00000	9519.6	.00000	.00000
2	.21668	2062.7	9519.6	.00000	-286.05
3	.50843	4833.0	9446.6	-250.37	-947.68
4	1.3134	11781.	7201.1	-2539.0	-954.48
5	2.1184	15434.	1257.7	-4844.1	2533.3
٤	2.3684	15486.	-689.38	-2944.2	2440.0
7	2.6184	15167.	-1704.0	-1114.2	508.52
ė	3.8884	12248.	-2073.5	823.24	-201.44
9	5.1030	10583.	-965.22	89.245	-3.8761
10	11.282	7112.0	-306.30	17.396	75651
11	16.979	5791.6	-181.75	4.4648	53429-01
12	49.973				
R10D-508/535					
1	.00000	.00000	15696.	.00000	.00000
2	. 23855	3744.4	15696.	.00000	-26915.
3	.31062	4865.6	15277.	-5819.5	511.15
4	1.1056	13590.	699 <b>3.1</b>	-4600.4	509.96
5	1.9006	16498.	645.35	-3384.2	1327.5
٤	2.1506	16468.	-797.84	-2388.6	1351.5
7	2.4006	16141.	-1738.7	-1374.9	607.70
8	3.5626	13217.	-2472.4	743.53	-130.47
9	5.1325	10664.	-1102.5	129.06	-6.9359
10	10.371	7432.8	-321.35	20.071	-1.1062
11	14.871	6292.3	-207.92	5.1373	66725-01
12	49.861			•	

B-73 BRC 45-85

1	T(I)	Y(I)	C(I,1)	C(I,2)	C(1,3)
R1C-127/154	5				
i	.00000	.00000	15424.	.00000	.00000
2	.20742	3199.2	15424.	.00000	14299+06
2 3	.24842	3821.9	14709.	-17509.	50391.
4	.45492	6556.4	13924.	13708.	-46173.
5	.66142	9609.7	13679.	-14896.	30937.
٤	.86792	12072.	11484.	4269.3	-13438.
7	1.2522	16353.	8811.7	-11223.	92984.
8	1.3207	16933.	8582.3	7873.1	-44615.
9	1.6196				
R1D-153/178					•
1	.00000	.00000	17526.	.00000	.00000
2	.26357	4619.3	17526.	.00000	-18774.
2	.37483	6543.9	16839.	-6219.0	15457.
4	.45373	7841.4	16147.	-2560.3	-3082.1
5	.64540	10821.	14825.	-4332.6	43945.
٤	.73566	12156.	15118.	7572.4	18059+06
. 7	.76407	12587.	15111.	-7816.2	11147.
8	.97973				
R2C-129/156					
1	.00000	.00000	9968.2	.00000	.00000
2	.95951	9564.6	9968.2	.00000	-2054.3
3	1.1756	11699.	9488.0	-1314.2	-1197.9
4	1.4763	14460.	8573.0	-2394.6	1465.5
5	1.7769	16861.	7530.6	-1072.8	-4198.8
٤	2.2699			•	
•	<del>-</del> · ·				

B-74 BRC 45-85

I	T(I)	Y(I)	C(1,1)	C(I,2)	C(I,3)	
R2D-095/122						
1 2 3 4 5 6	.00000 .42113 .46963 .77716 1.0104 1.0782	.00000 6395.0 7112.7 11243. 13691. 14269.	15185. 15185. 14950. 11827. 9004.7	.00000 .00000 -5076.6 -5046.6 -7051.2 -7120.2	.00000 -36491. 32.327 -2864.1 -338.85 1046.1	
	1.3415	was a specific production of	and the second of the second o		The end of	
R4D-198/225						
1 2 3 4 5	.00000 .71293 .74238 .91175 1.1895	.00000 9314.8 9696.6 11687.	13065. 13065. 12761. 11493.	.00000 .00000 -10372. 2886.7	.00000 11786+06 26094. -15665.	
RAA-531/558						
K6H-331/330				.00000	.00000	
1 2 3 4 5 6 7 8 9	.00000 .28760 .29910 .89660 1.4941 1.7441 1.9941 2.8800 5.4626 6.5374 .14.566	.00000 5379.5 5594.1 13091. 15231. 14863. 12228. 7998.6 7372.8 5126.2	18705. 18705. 18574. 7301.7 725.30 -847.71 -2031.9 -3102.6 -706.54 -499.09 -153.81	.00000 -11397. -7468.9 -3537.6 -2754.4 -1982.3 773.71 154.09 38.923 4.0844	33034+06 2191.2 2193.2 1044.2 1029.5 1037.0 -79.976 -35.717 -1.4465 55343-01	
11	47.904	012012	. ••••			

#### THE UNIAXIAL MECHANICAL RESPONSE OF MULTI-RIDGE ICE

# VOLUME IV APPENDIX C - STRESS-STRAIN CURVES

BY

J. F. DORRIS AND J. S. AUSTIN

TECHNICAL PROGRESS REPORT

BRC 45-85 OCTOBER 1985

Project No. 327-27802.34

Mechanical Properties of Sea Ice

SHARED - Under the Research Agreement between SIRM, and Shell Oil Company dated January 1, 1960, as amended.

Reviewed by:

E.G. Ward

E.N. Earle

Participant:

C.A. Gutierrez

Released by:

J.H. Lybarger

Reference:

Based on work through December 1983.

( 图 )

### C-1 BRC 45-85

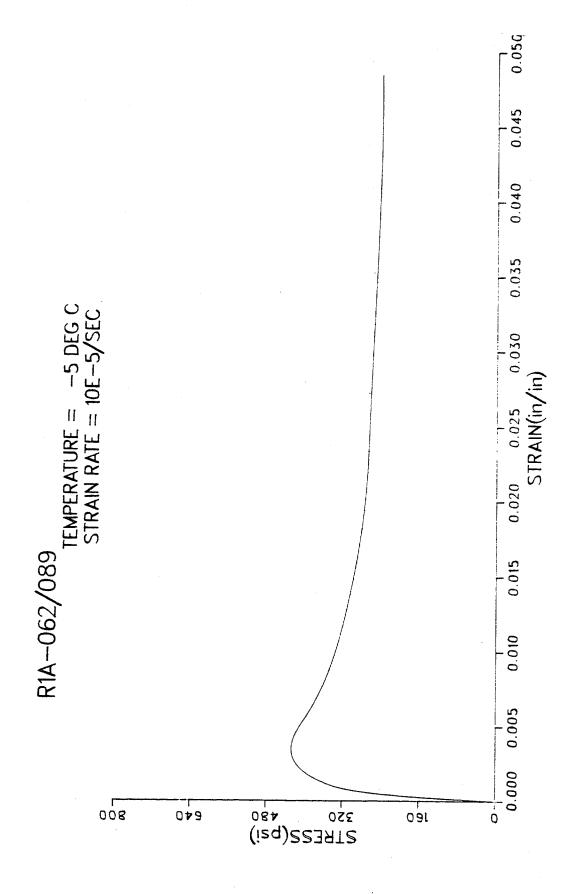
## Appendix C

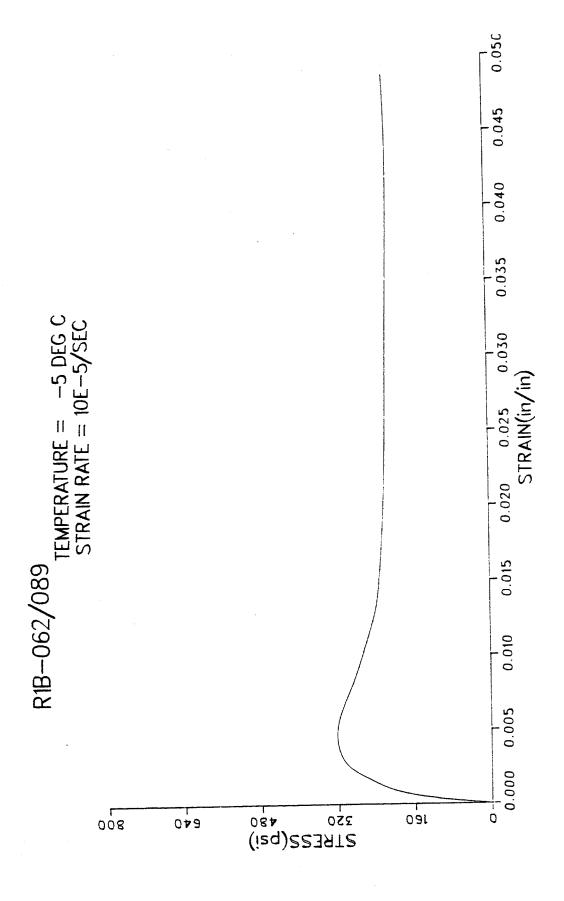
#### STRESS-STRAIN CURVES

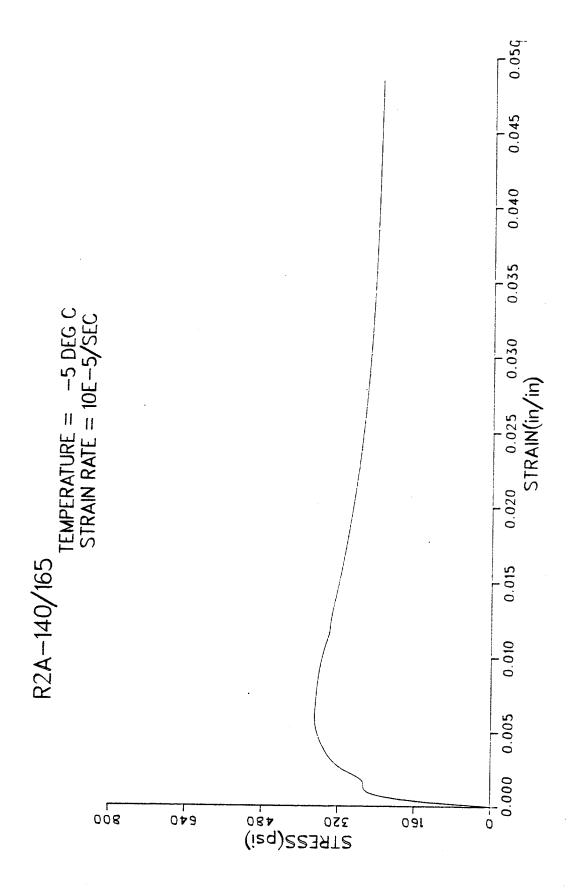
							Page
Strain	Rate	=	(10E-5)/sec,	Temperature	=	-5°C	<b>C</b> -3
Strain	Rate	=	(10E-5)/sec,	Temperature	=	-20°C	C-73
Strain	Rate	=	(10E-3)/sec,	Temperature	<u> </u>	-5°C	C-113
Strain	Rate	=	(10E-3)/sec,	Temperature	) =	-20°C	C-185

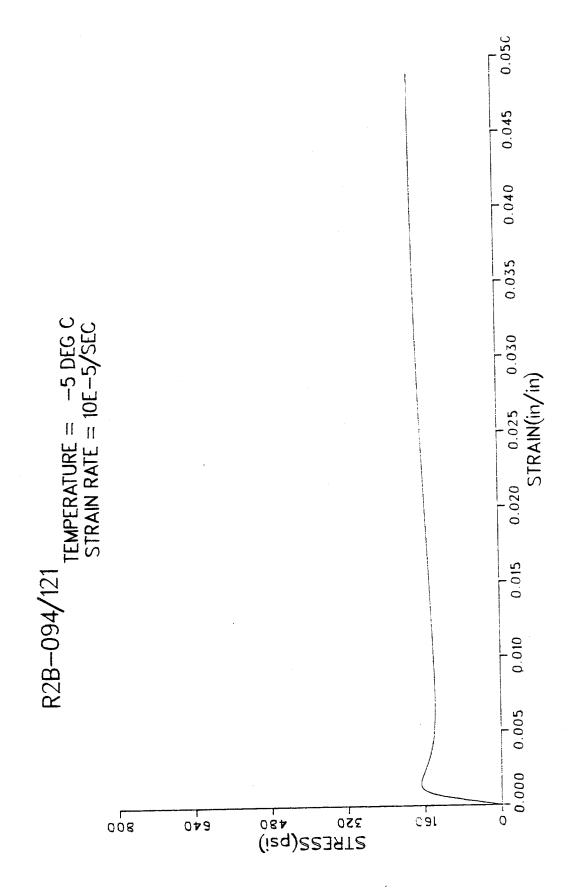
and the second of the second o

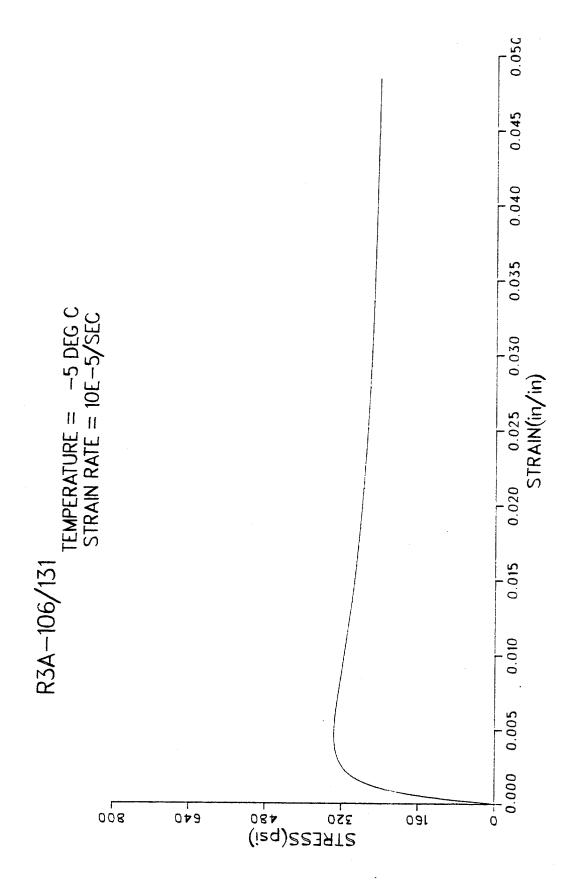
.

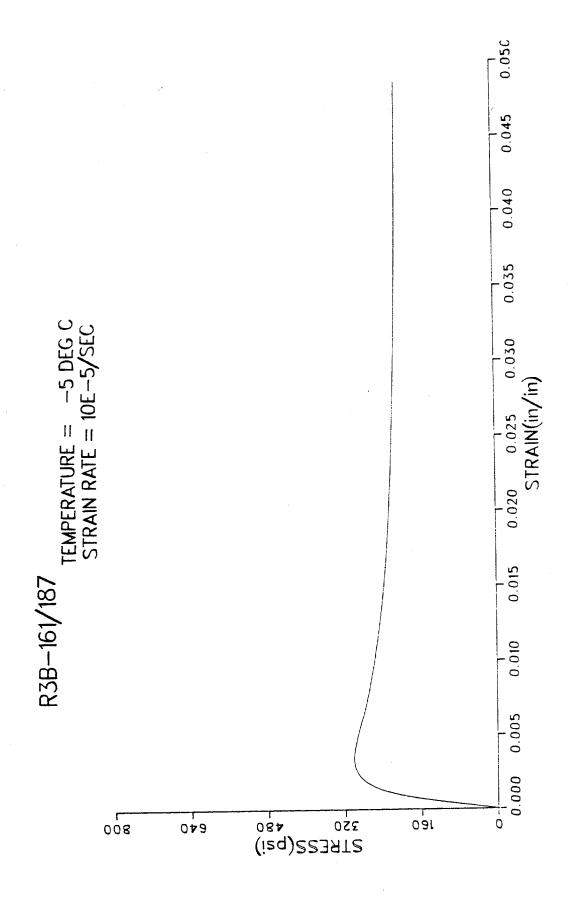

.

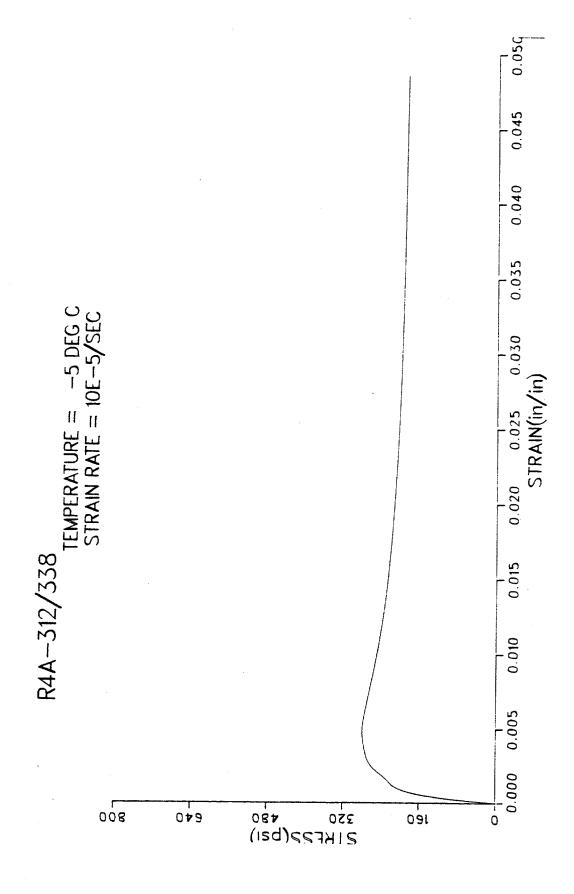

Appendix C

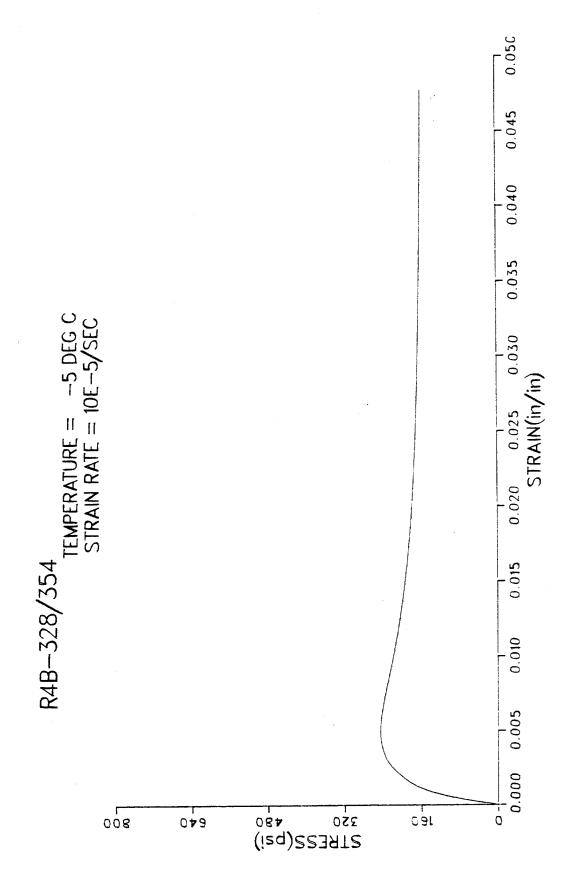

STRESS-STRAIN CURVES

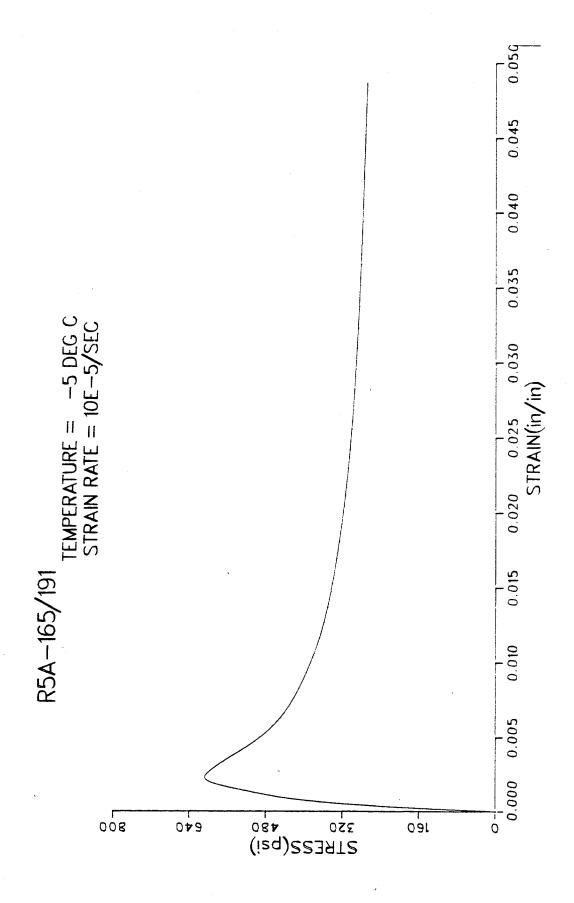

.

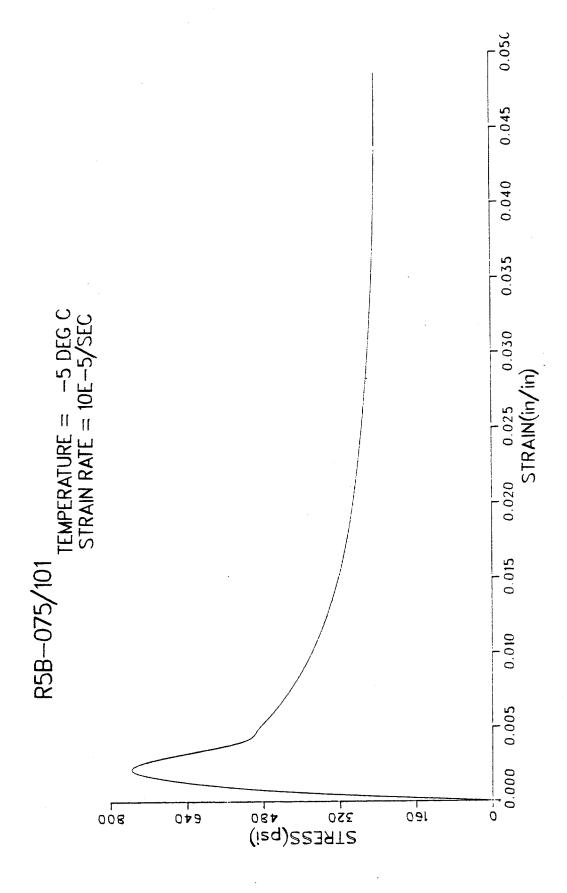

STRAIN RATE = (10E-5)/SEC TEMPERATURE = -5°C

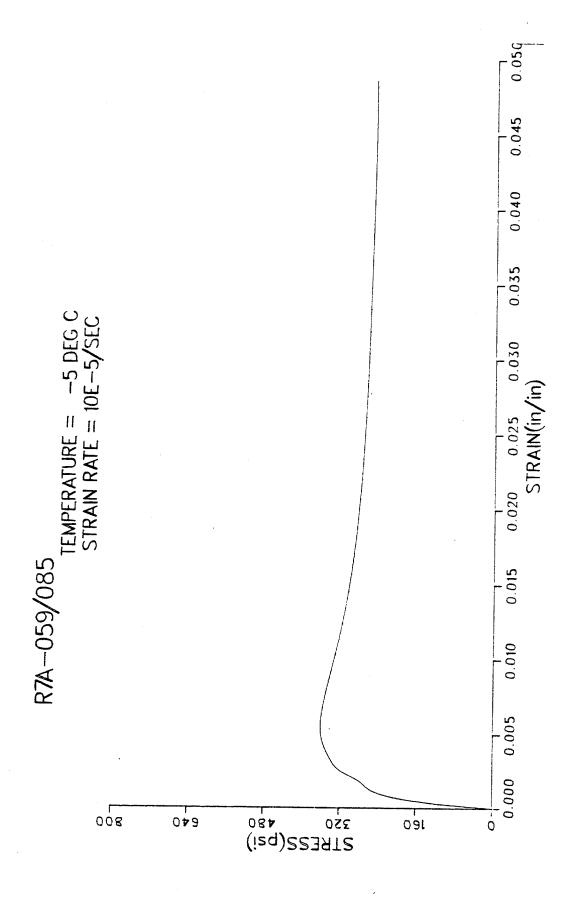


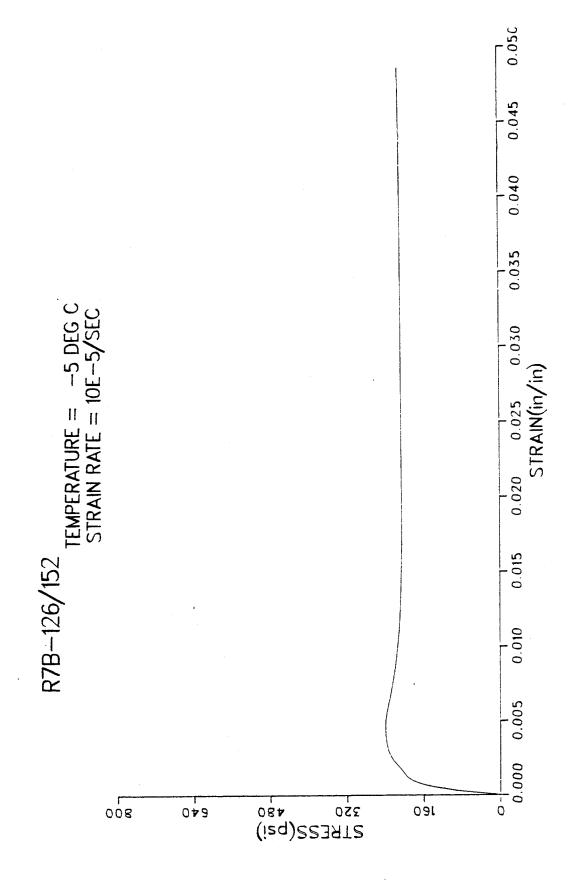



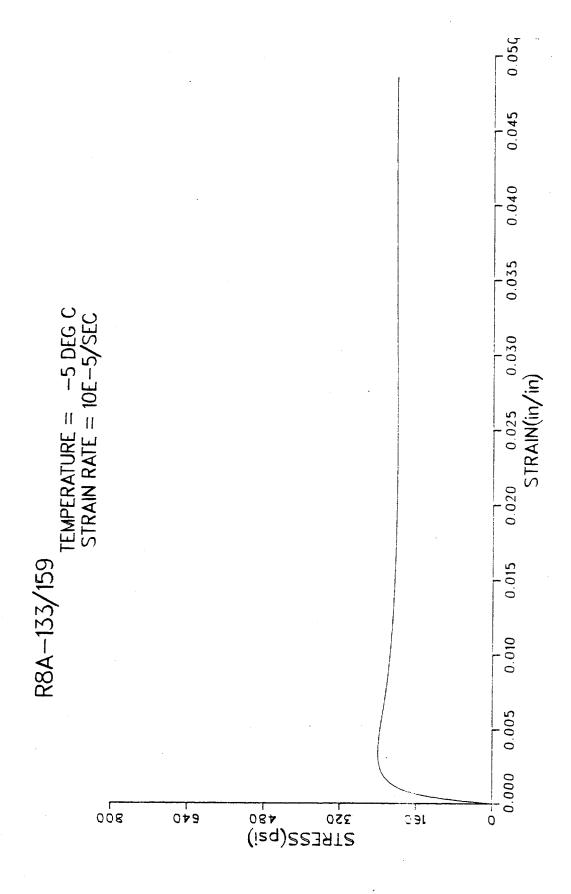



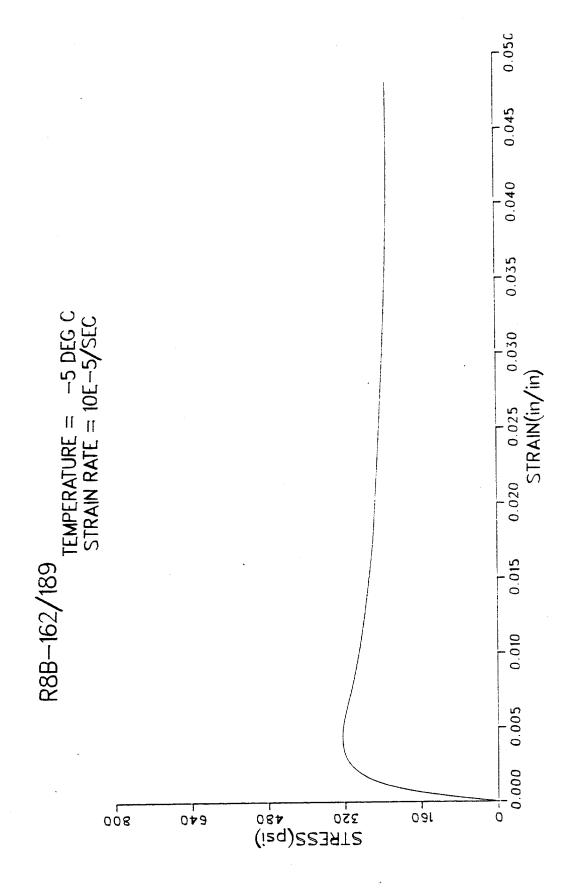



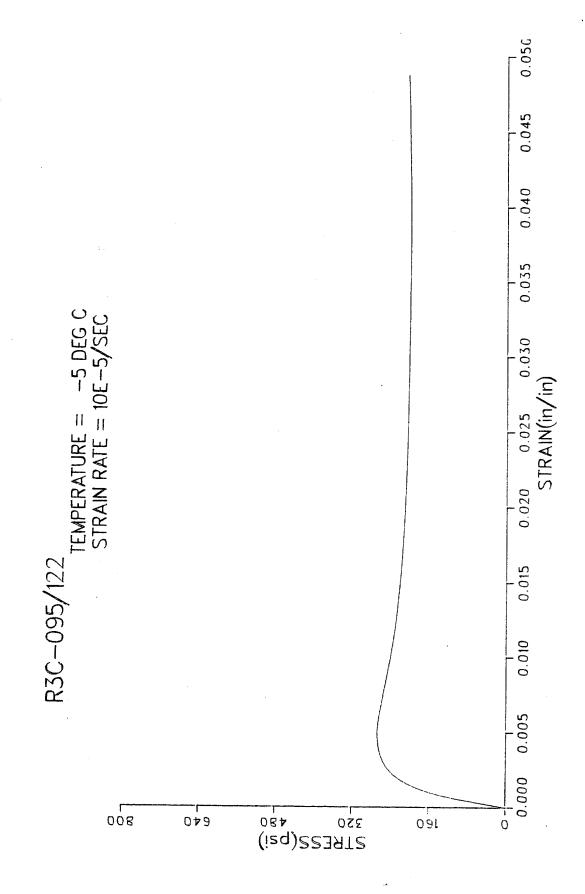



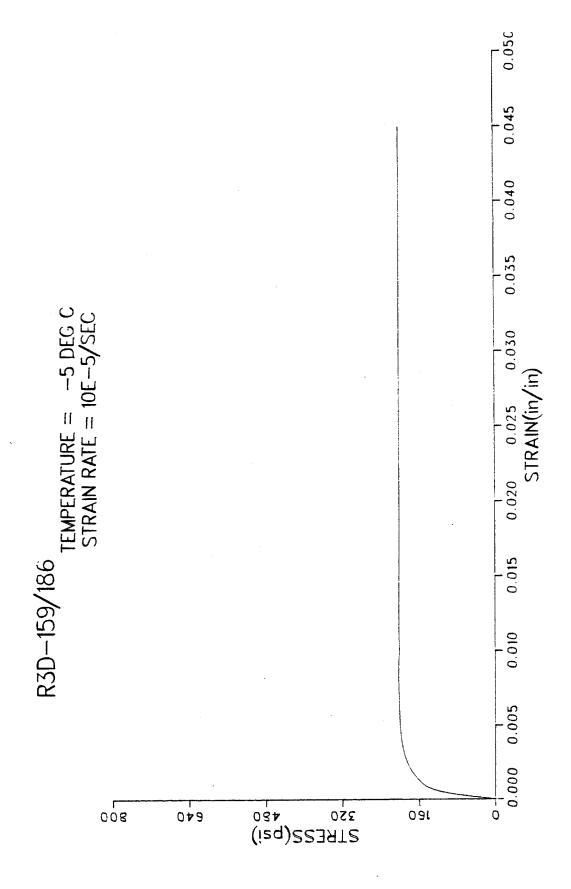



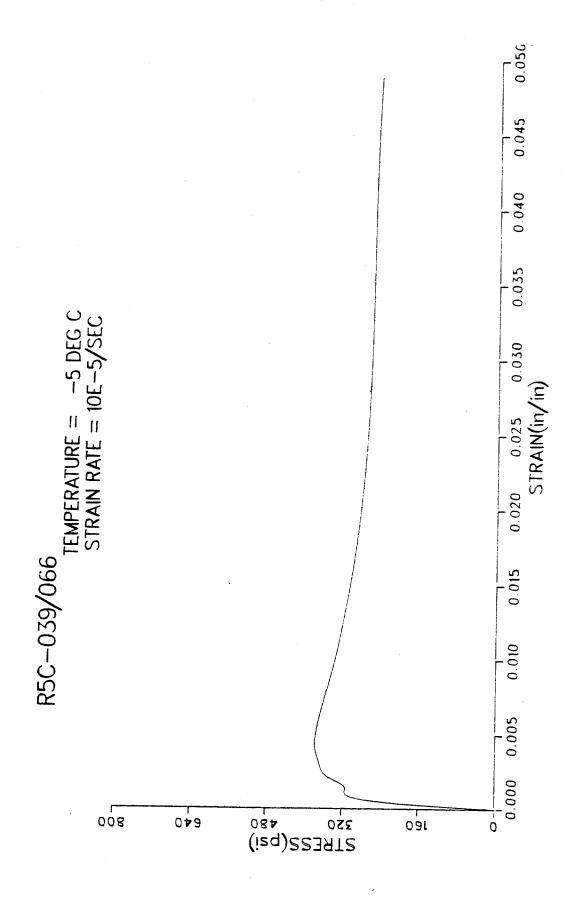



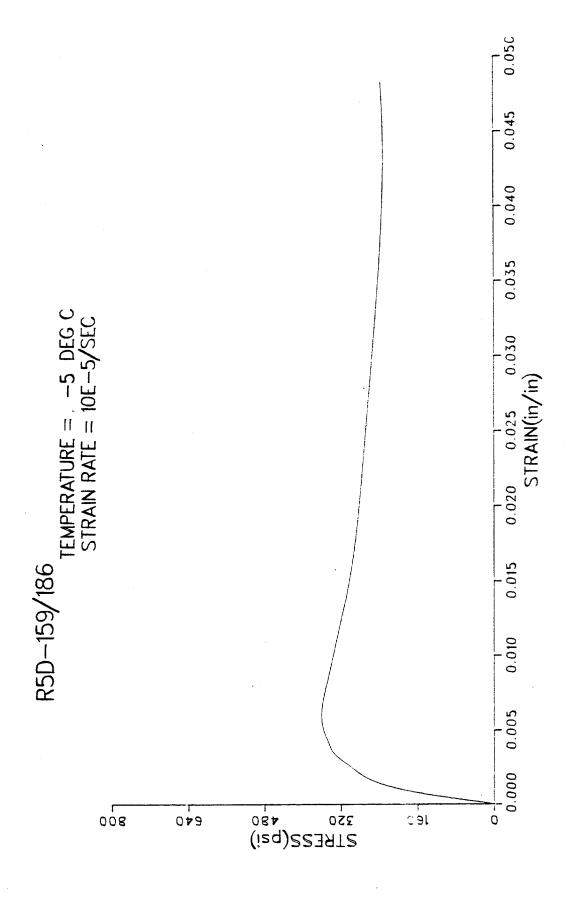



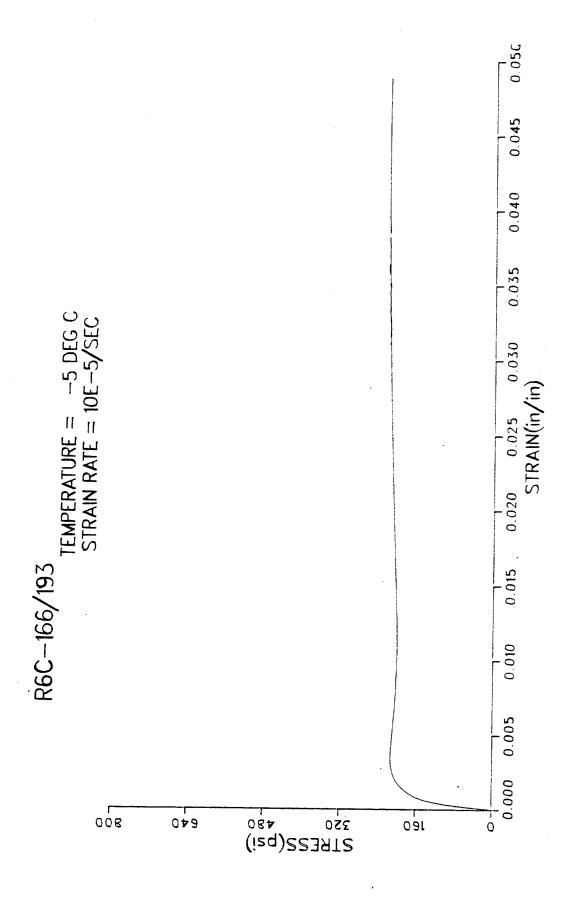



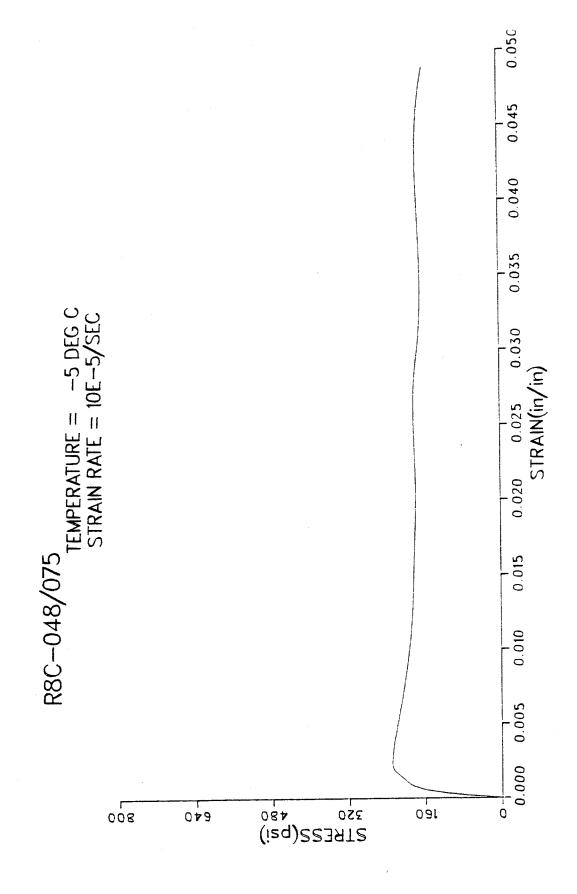



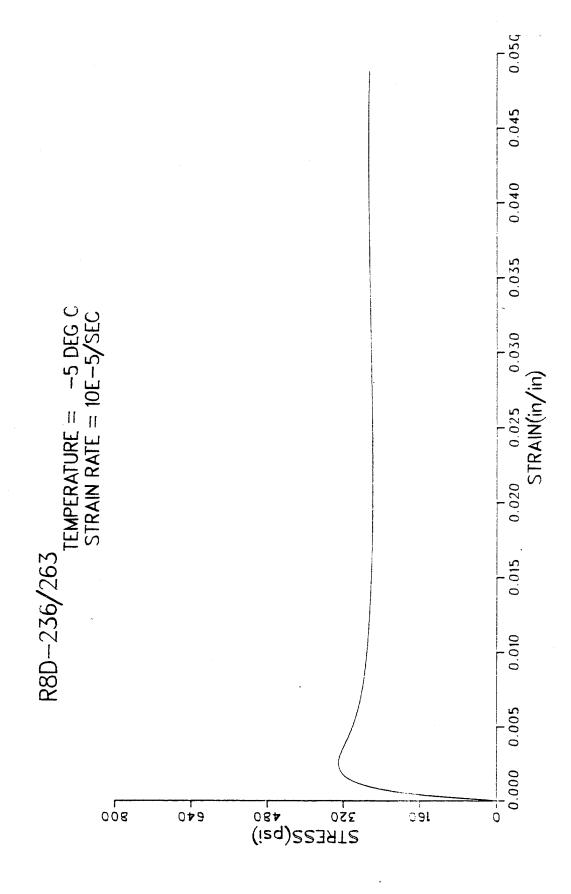



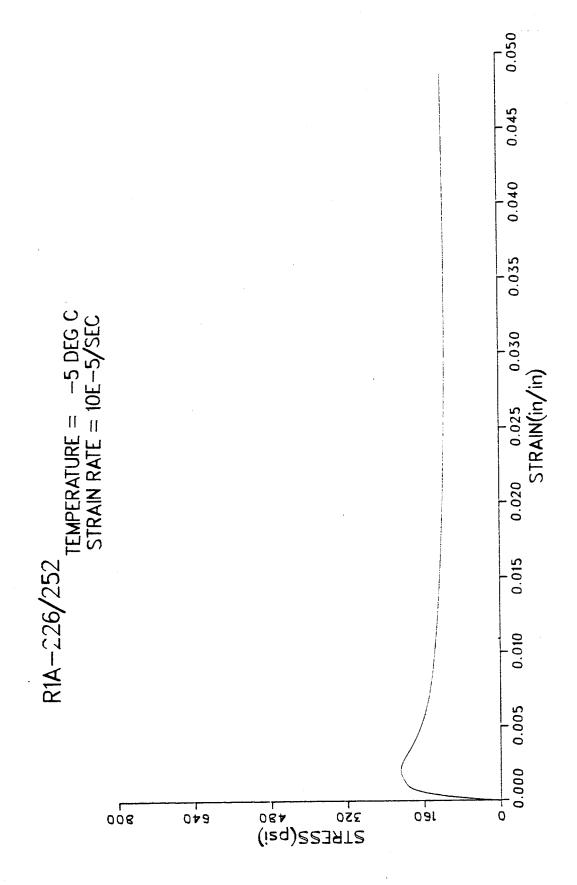



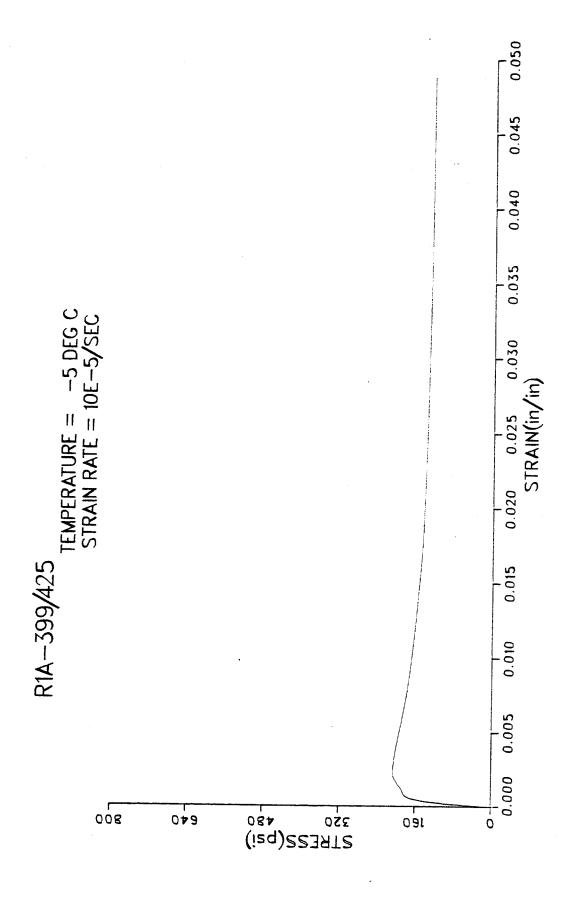



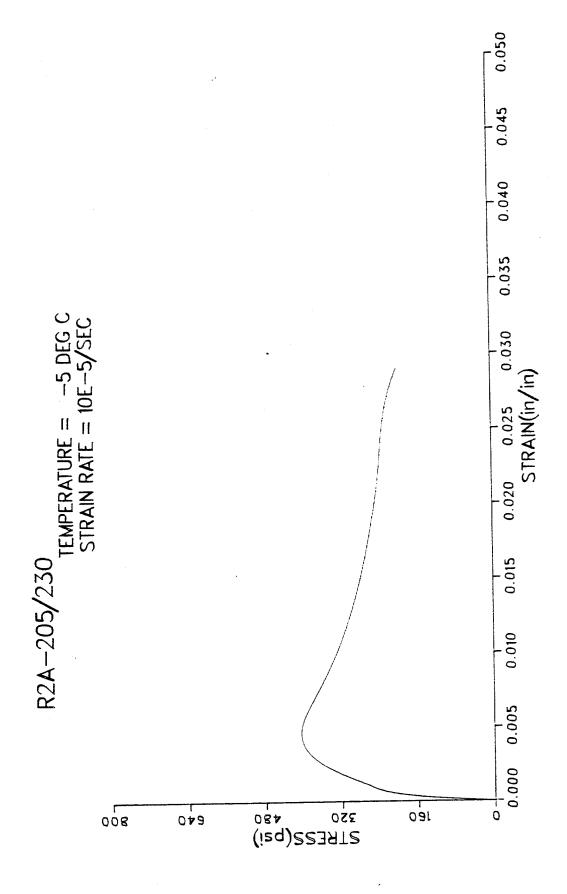



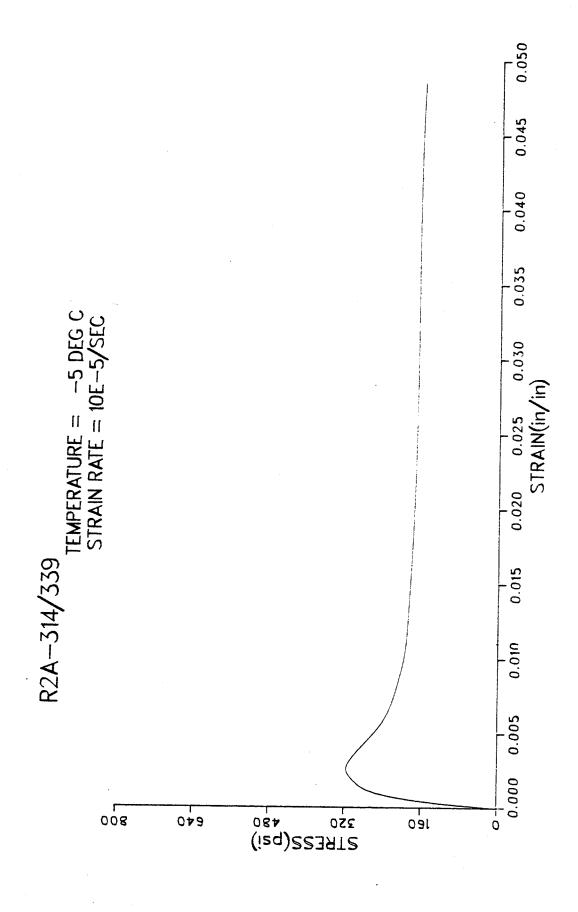



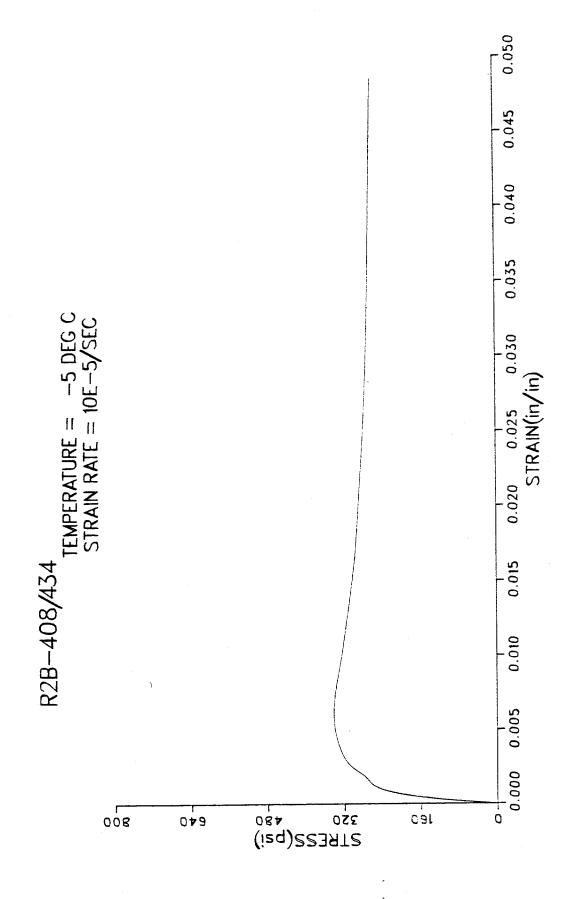



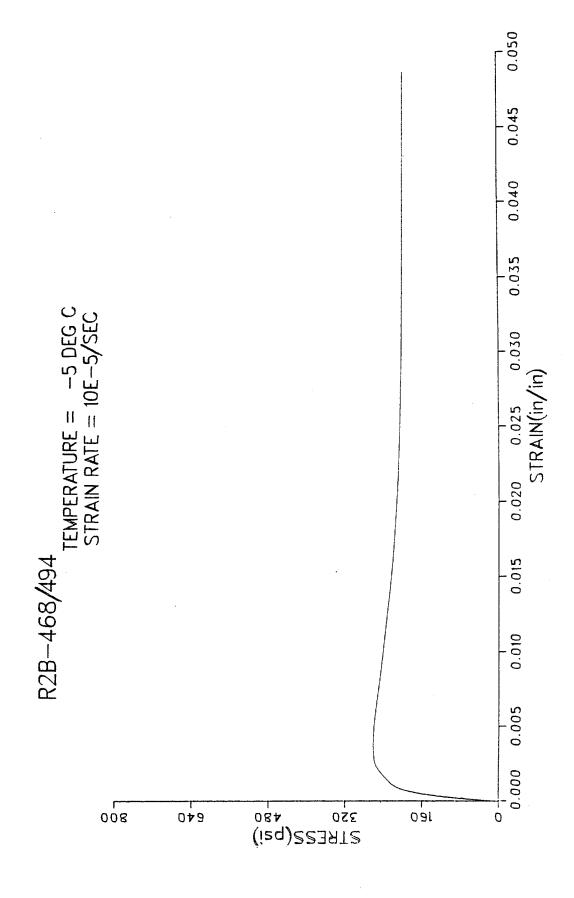



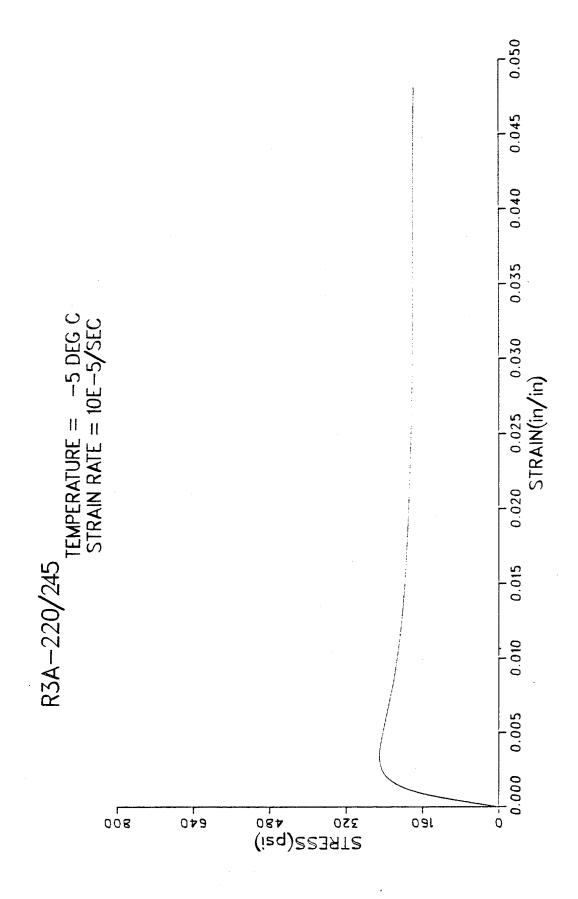



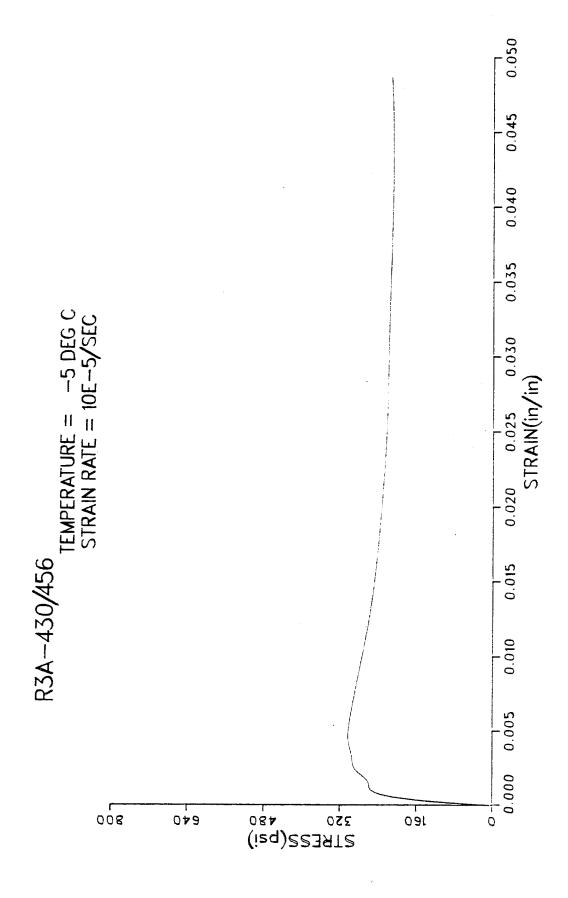



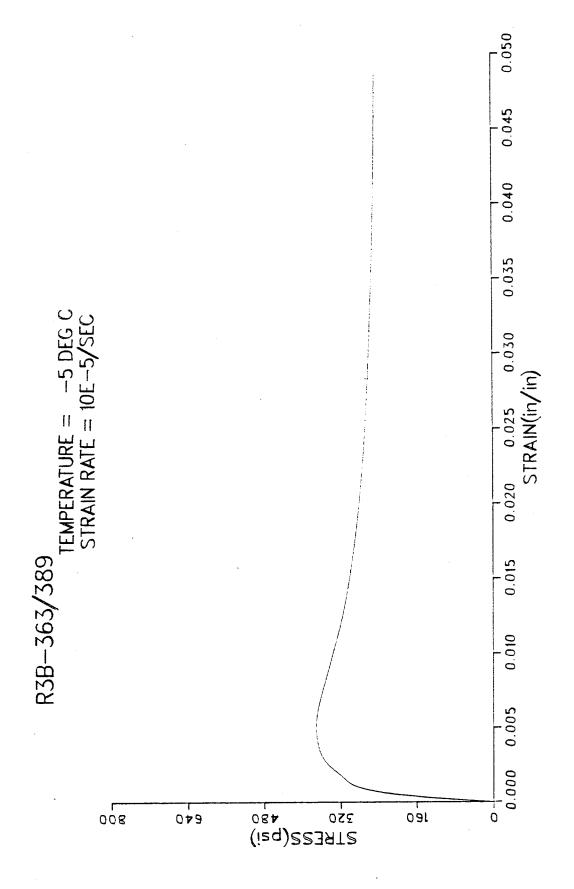



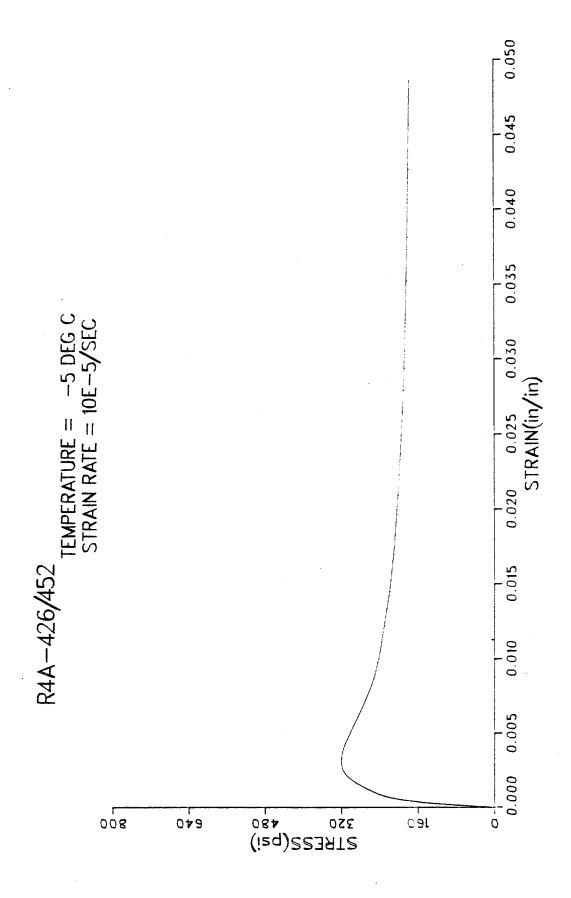



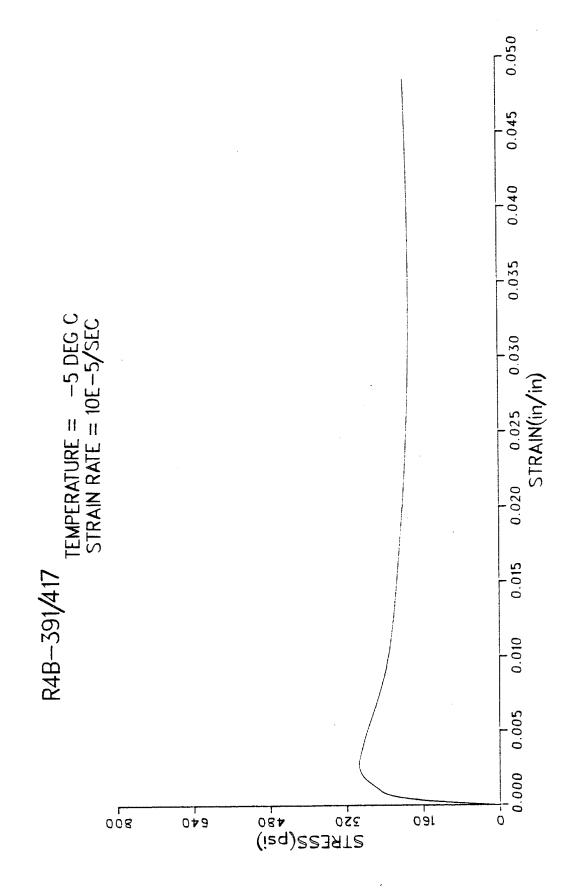



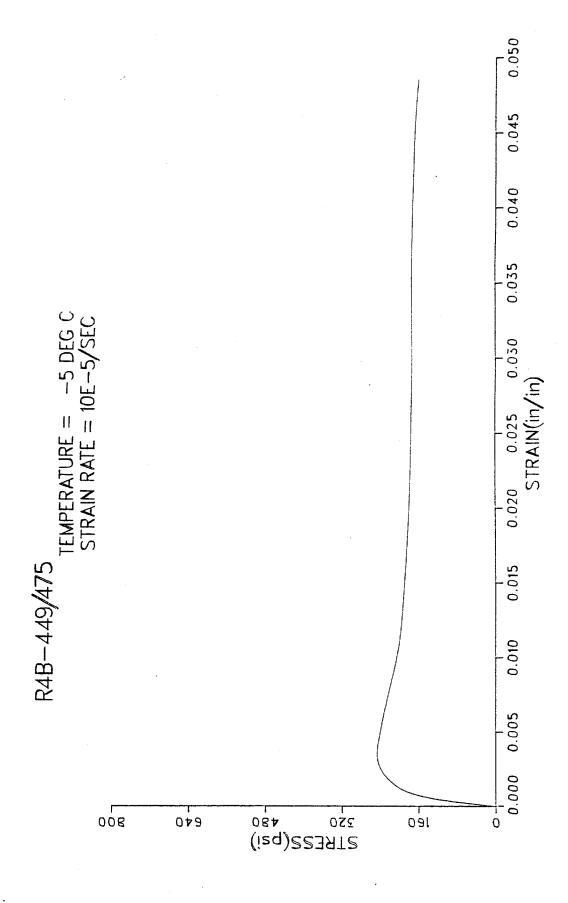



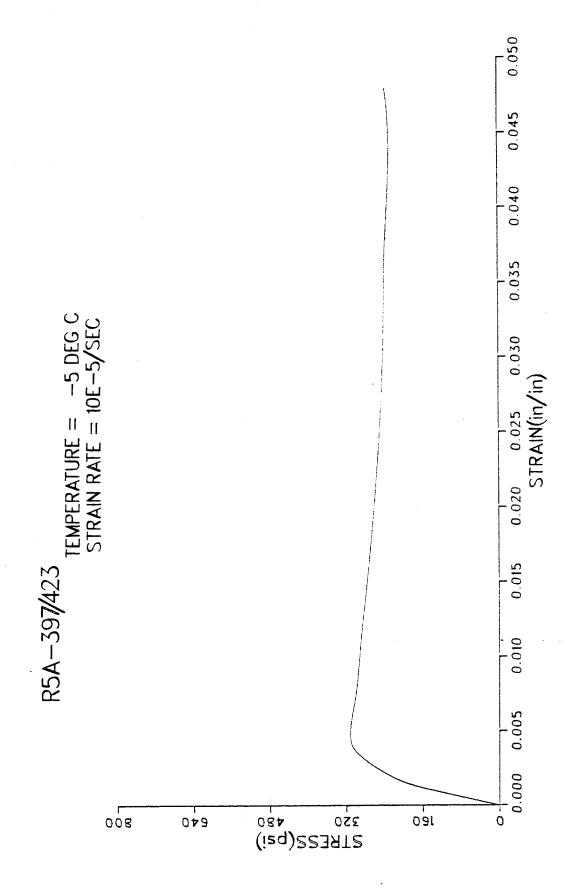



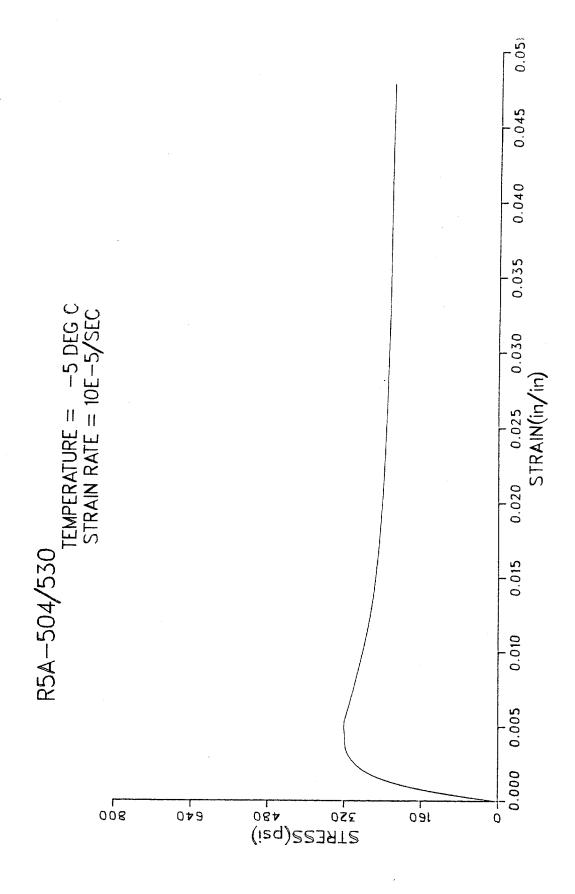



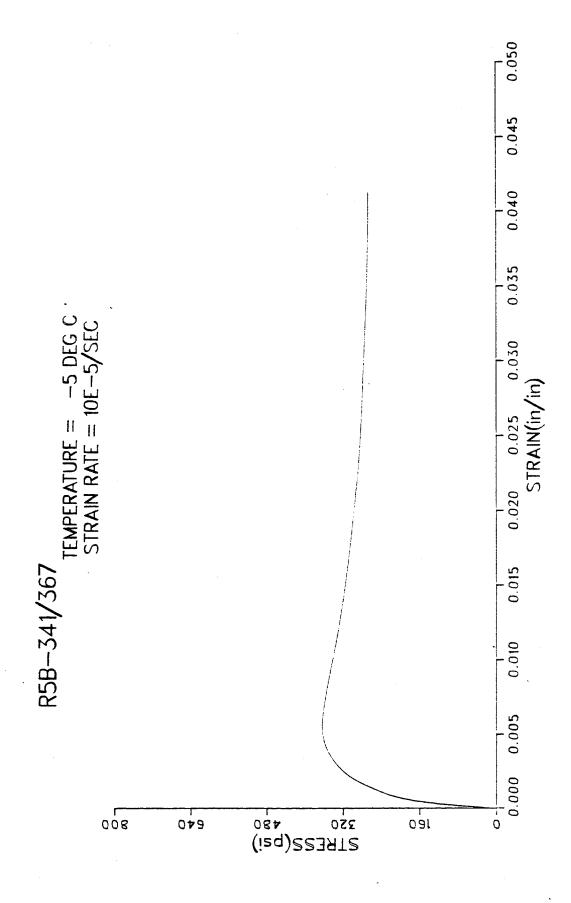



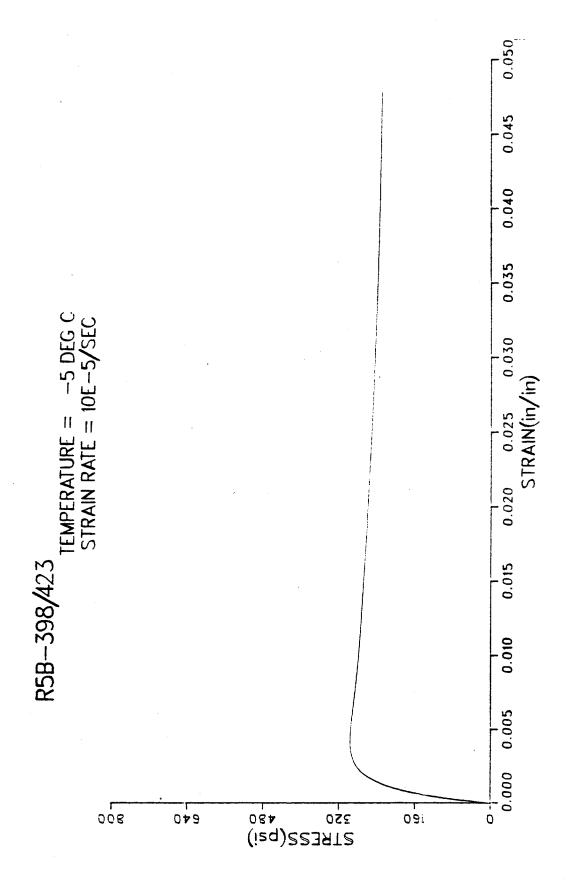



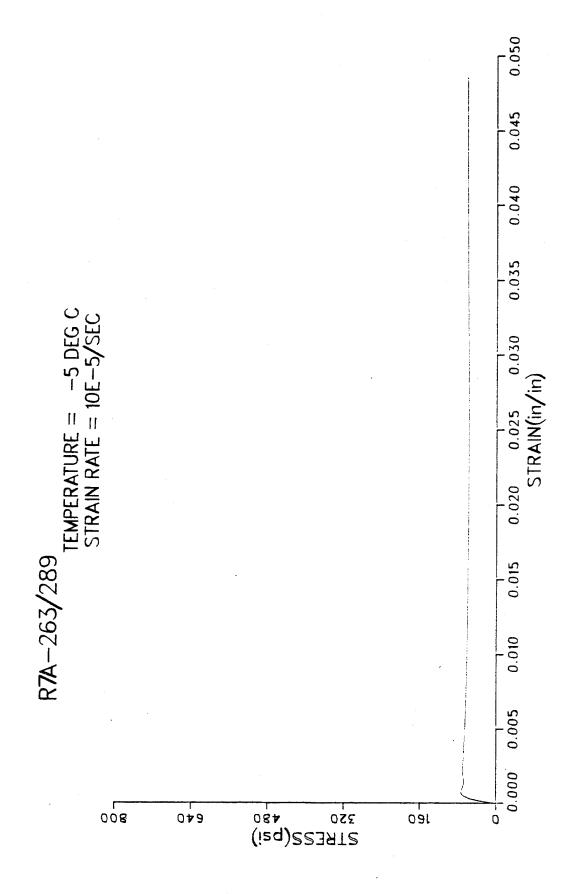


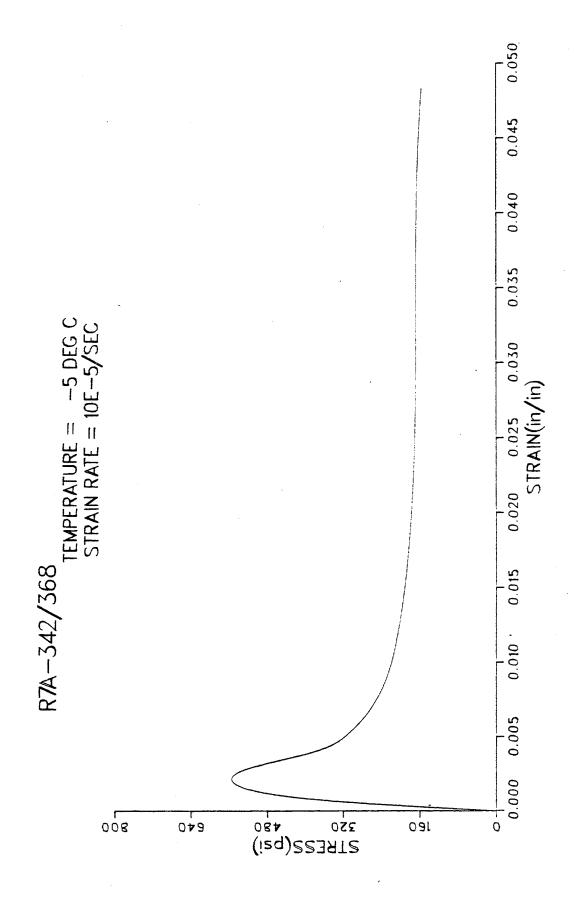


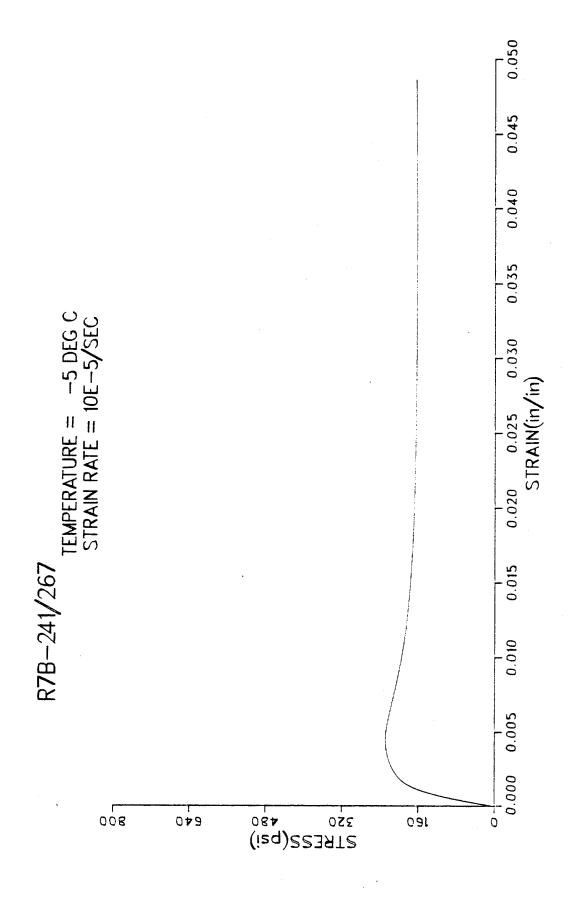


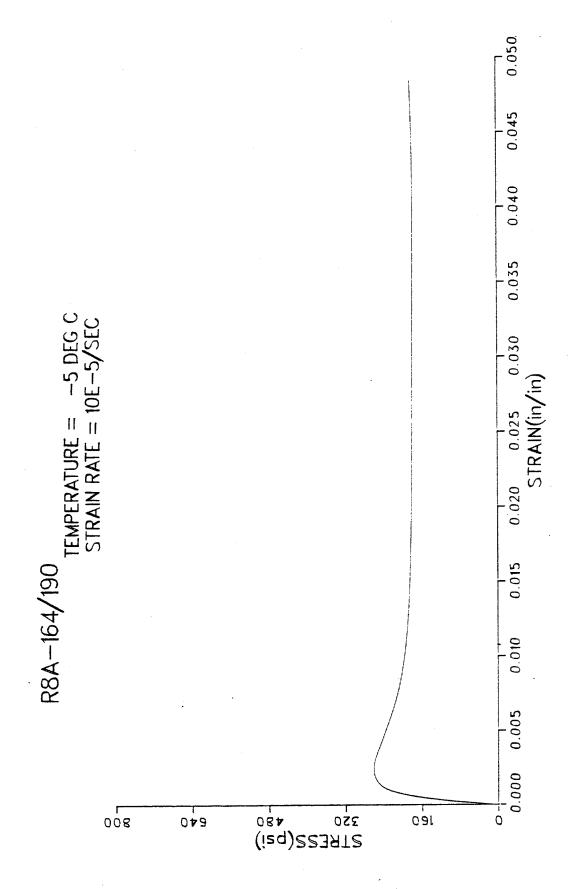



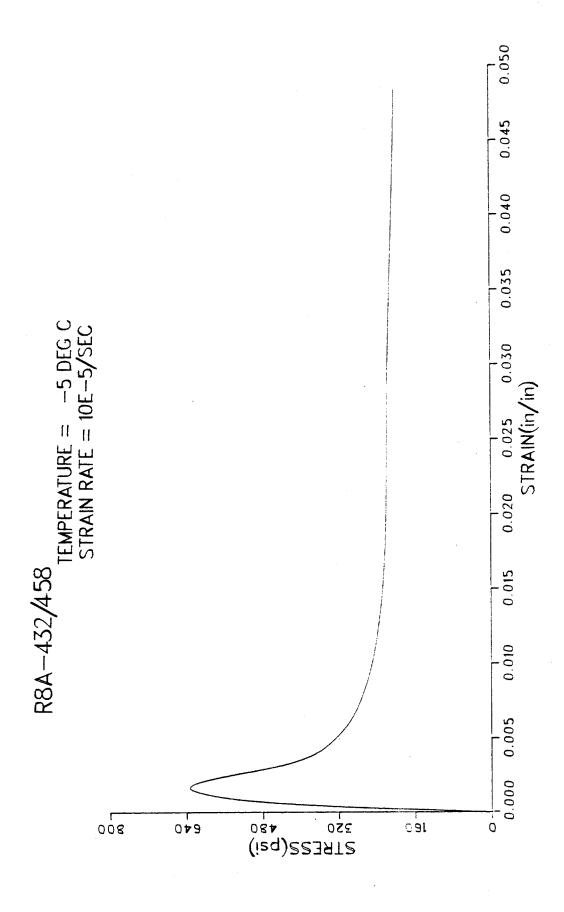



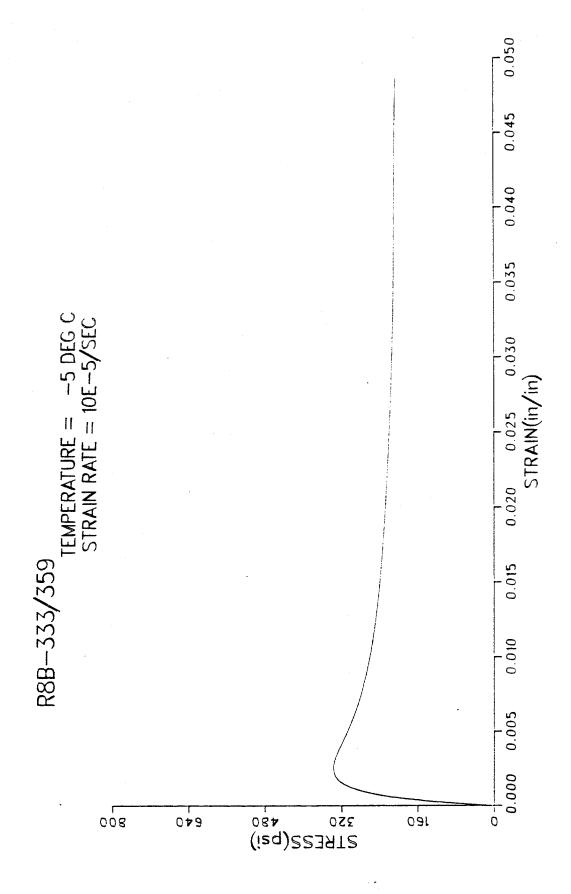



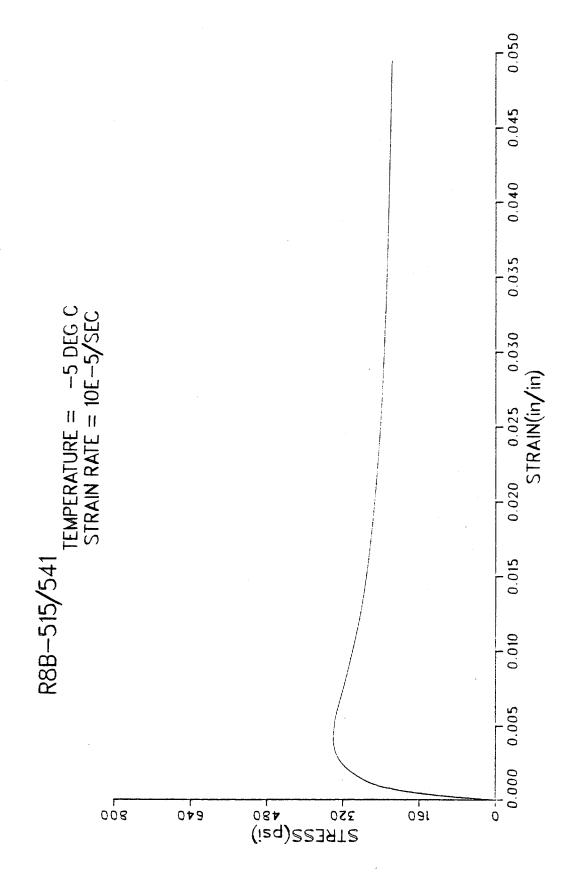



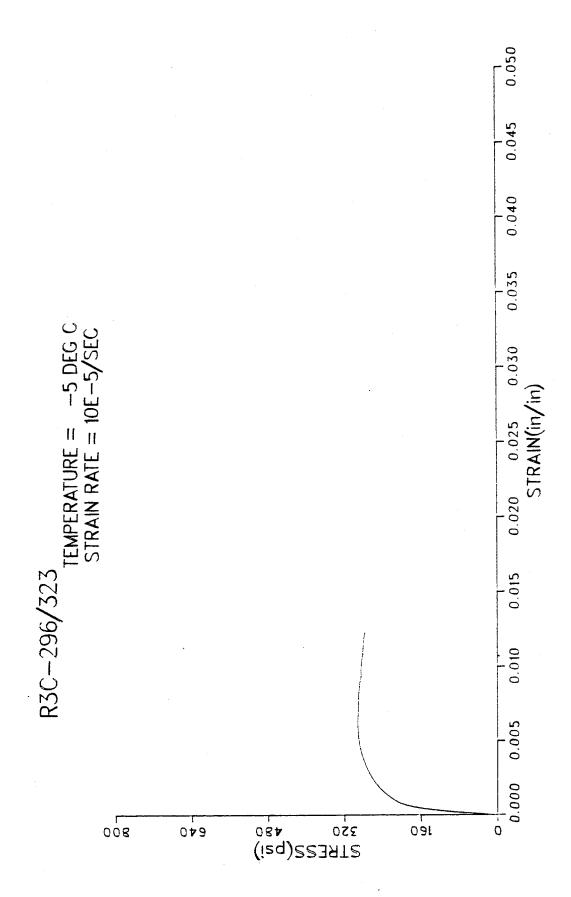



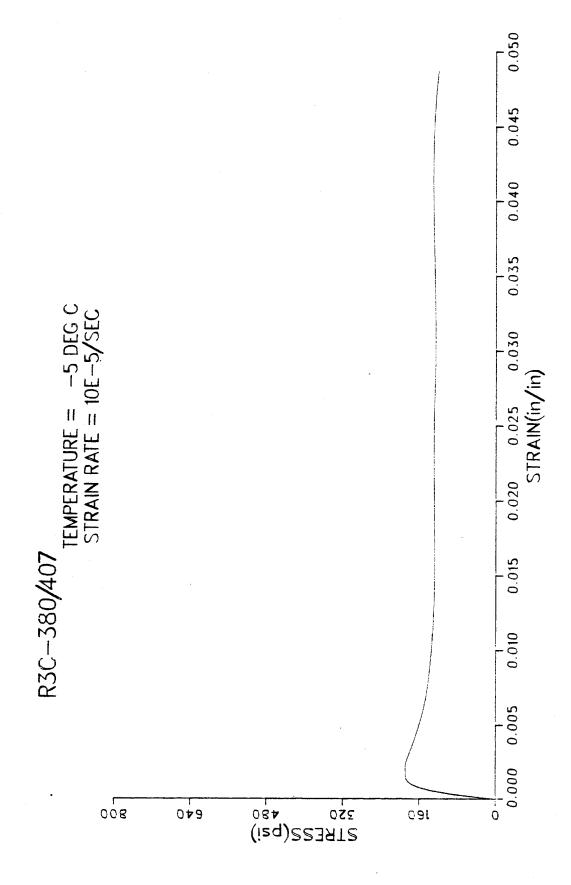



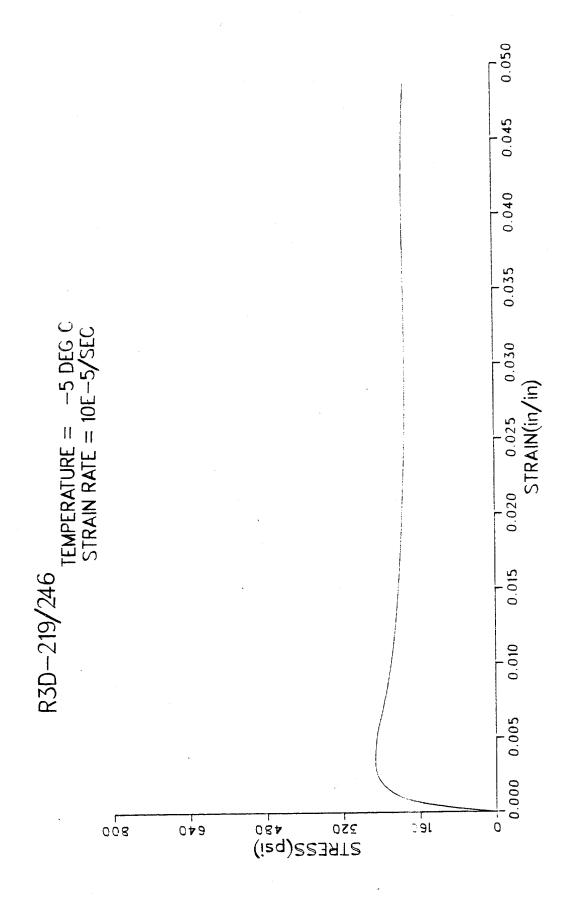



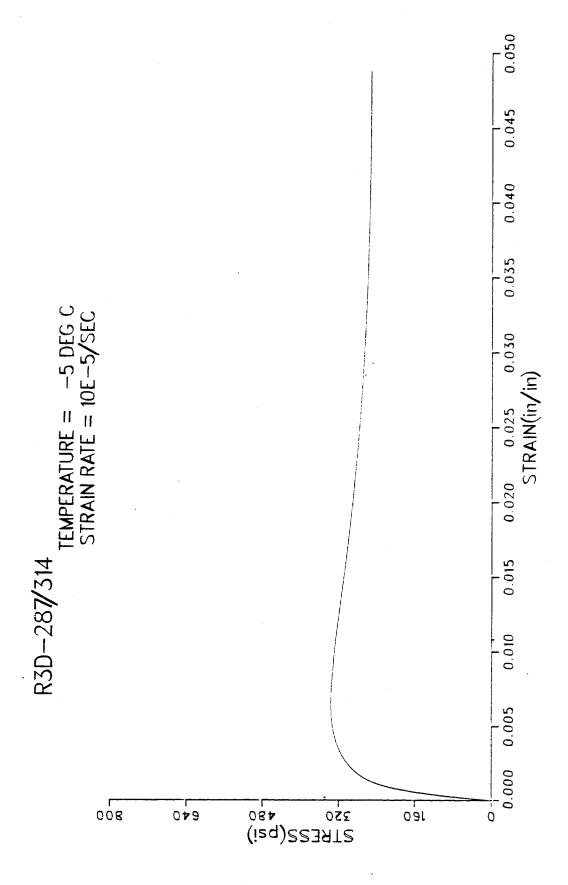



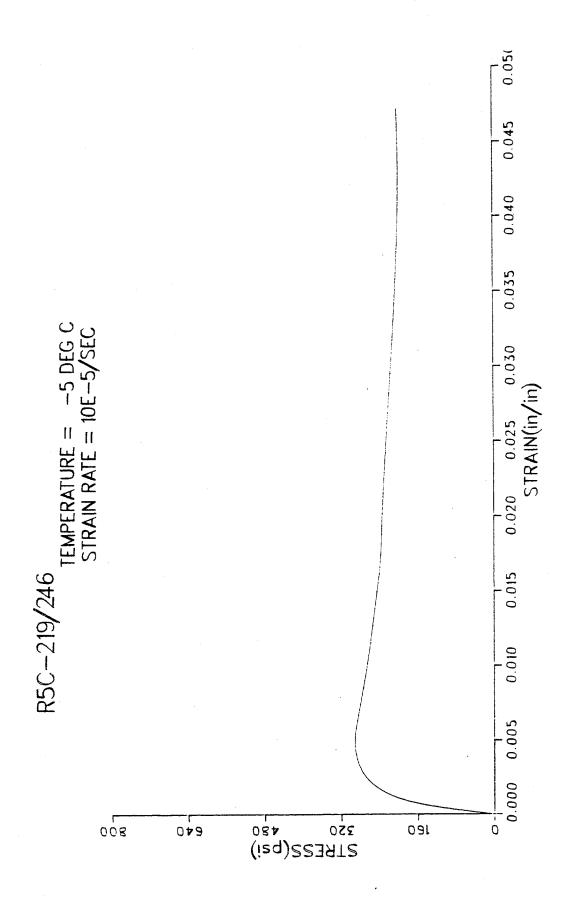



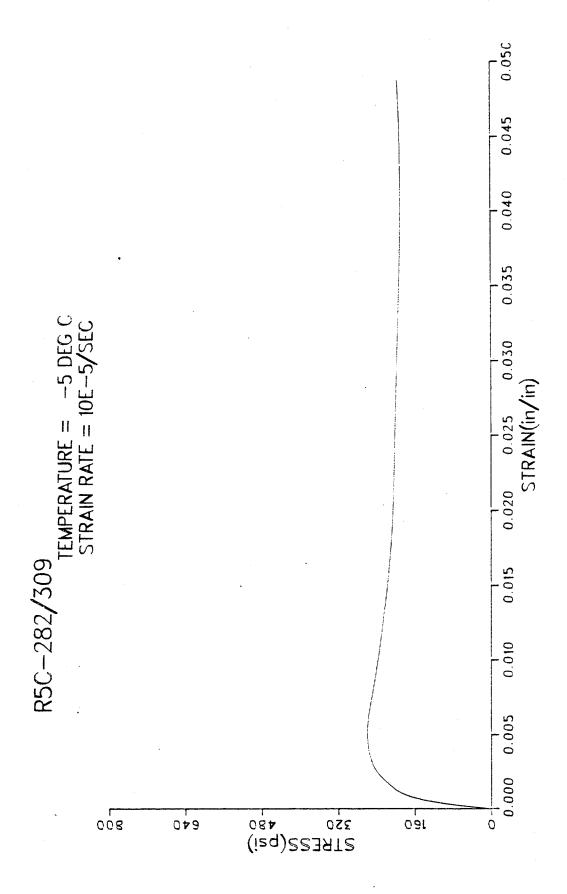



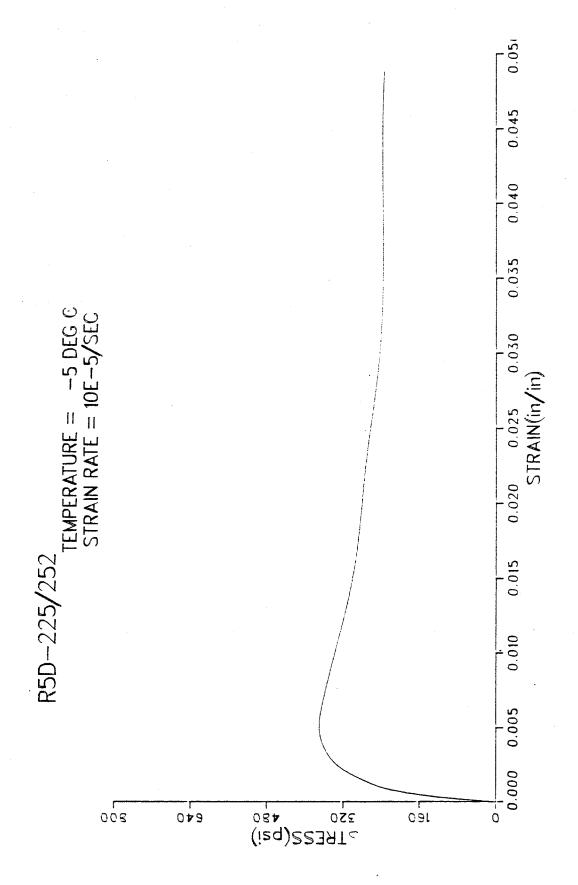



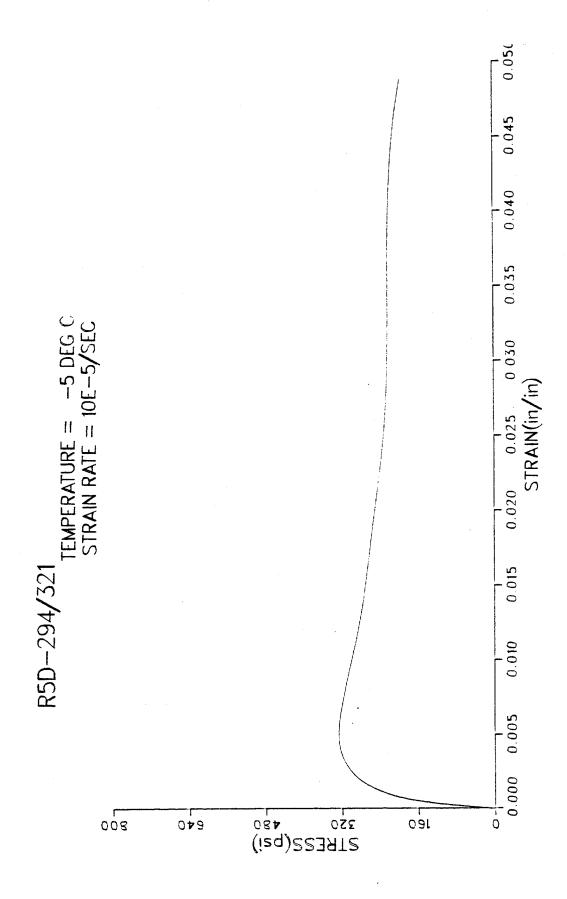



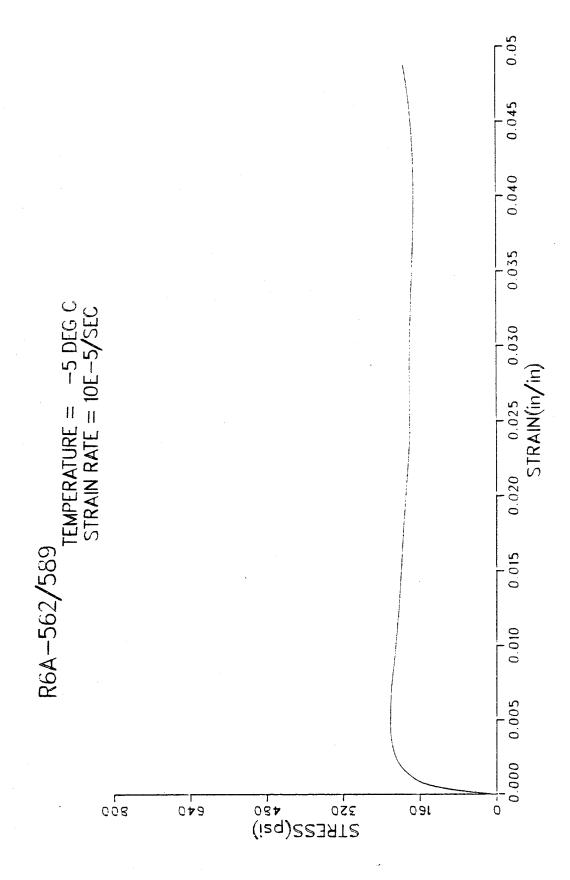



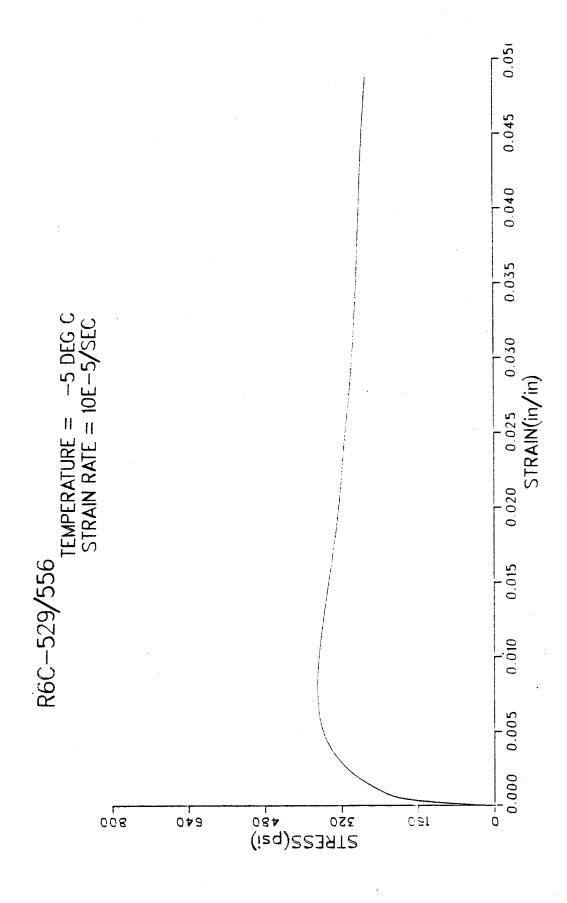



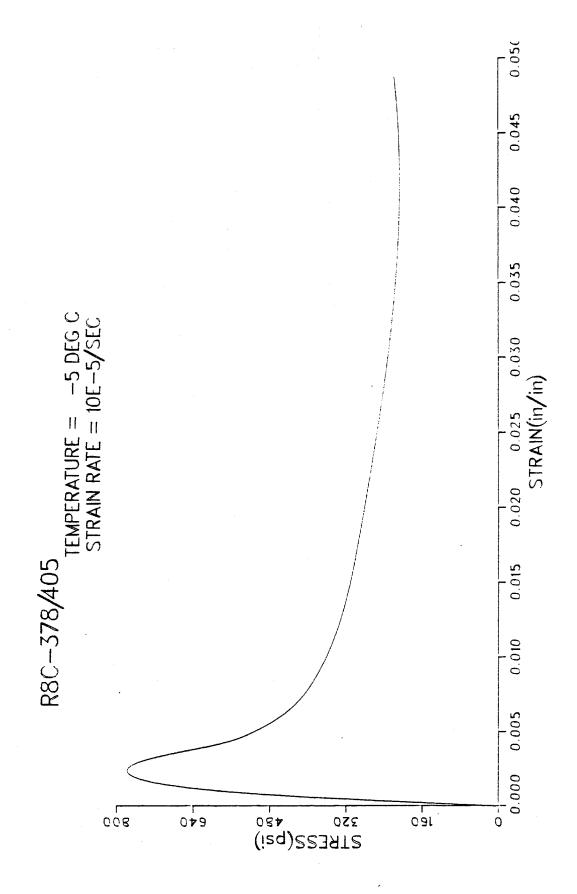



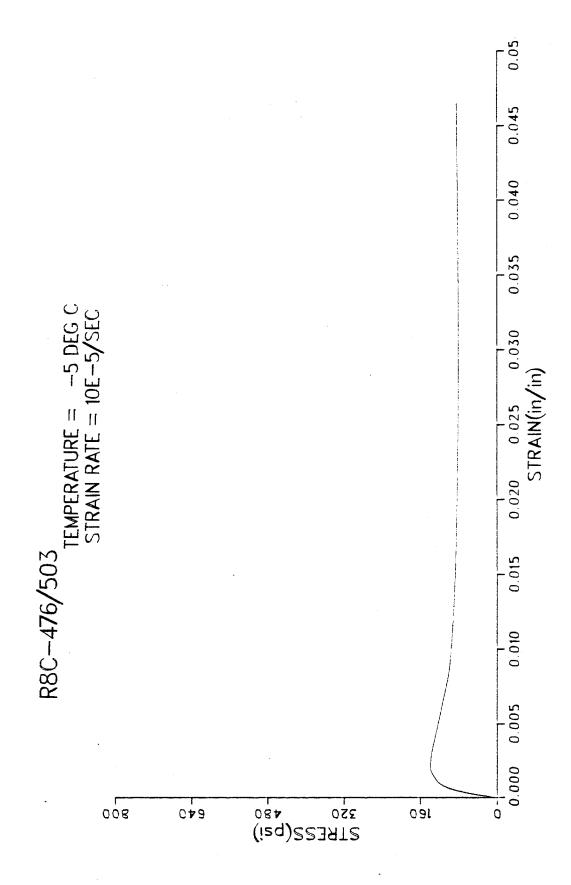



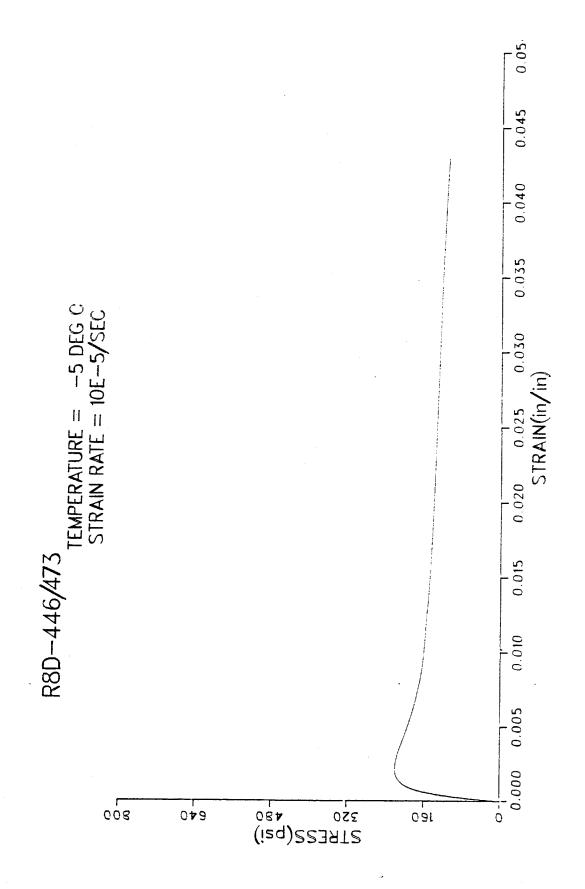



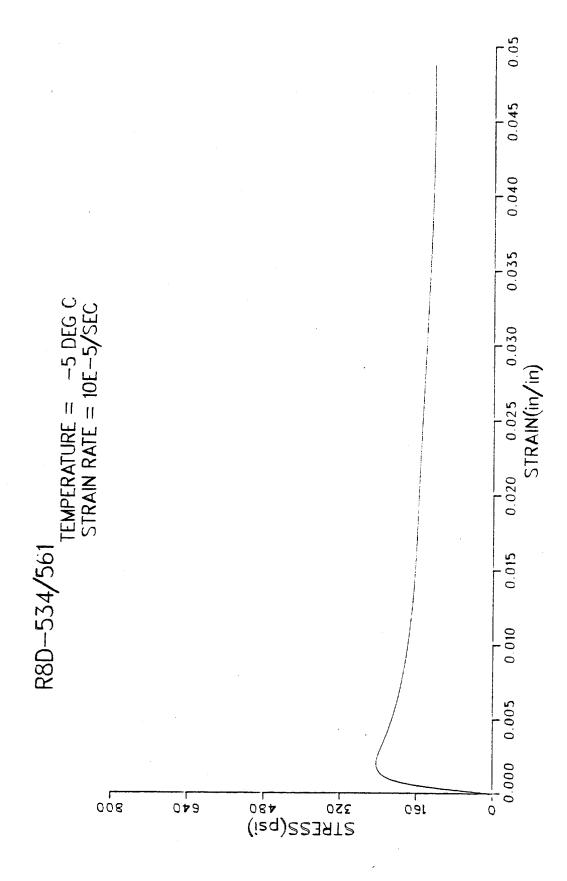



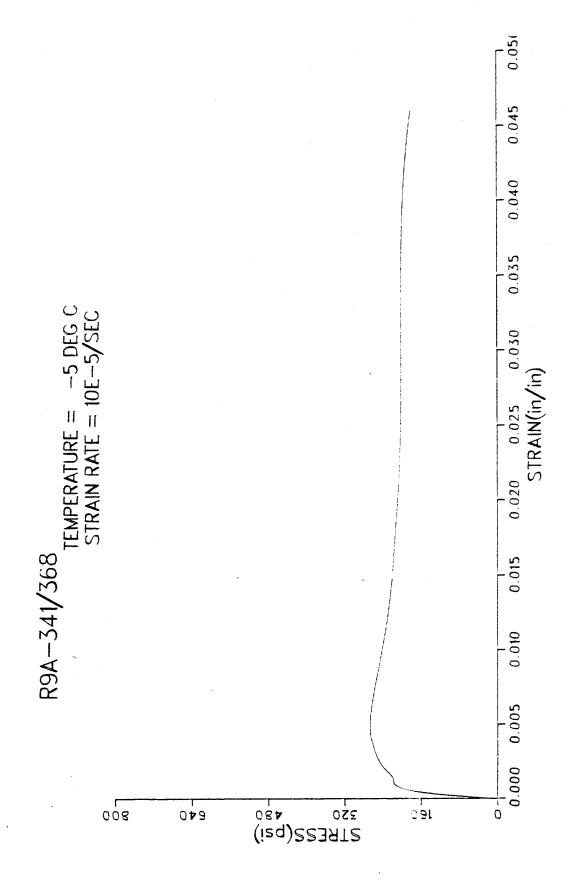



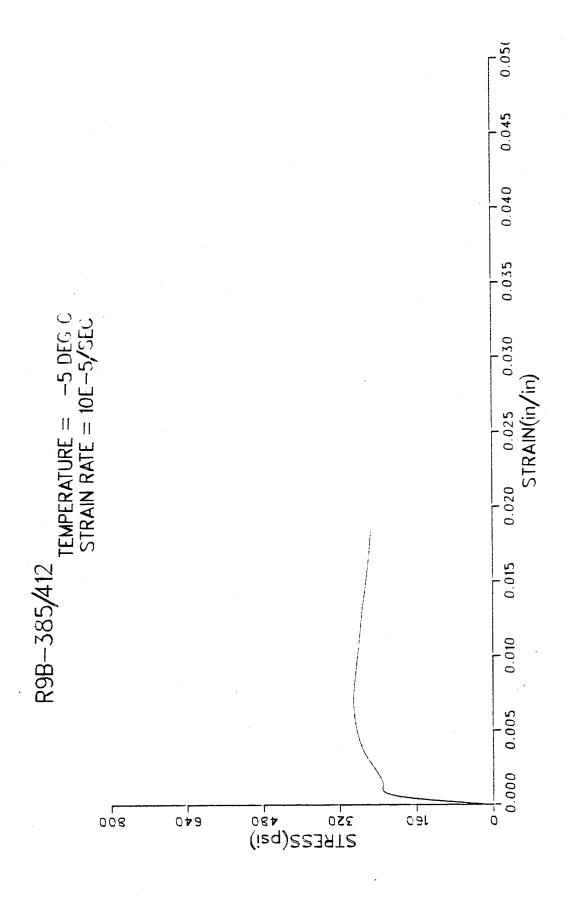



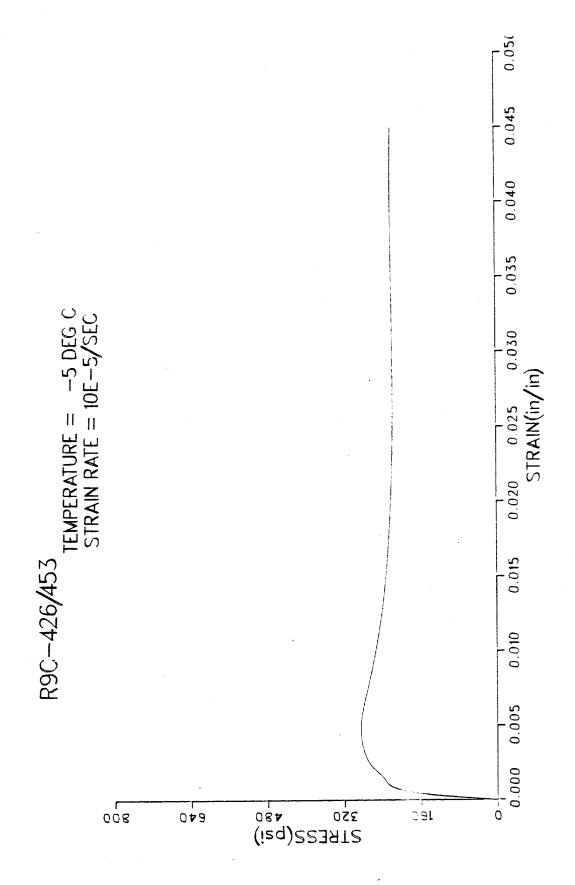



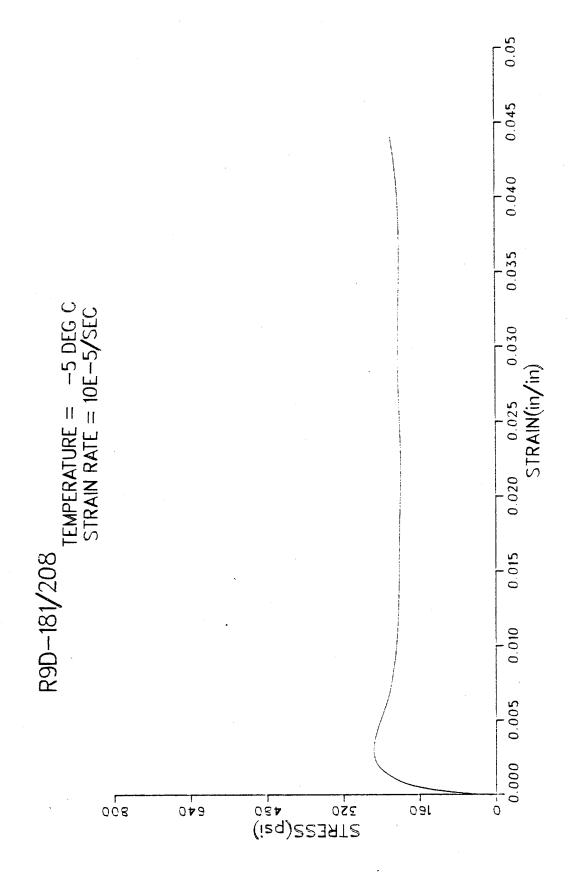



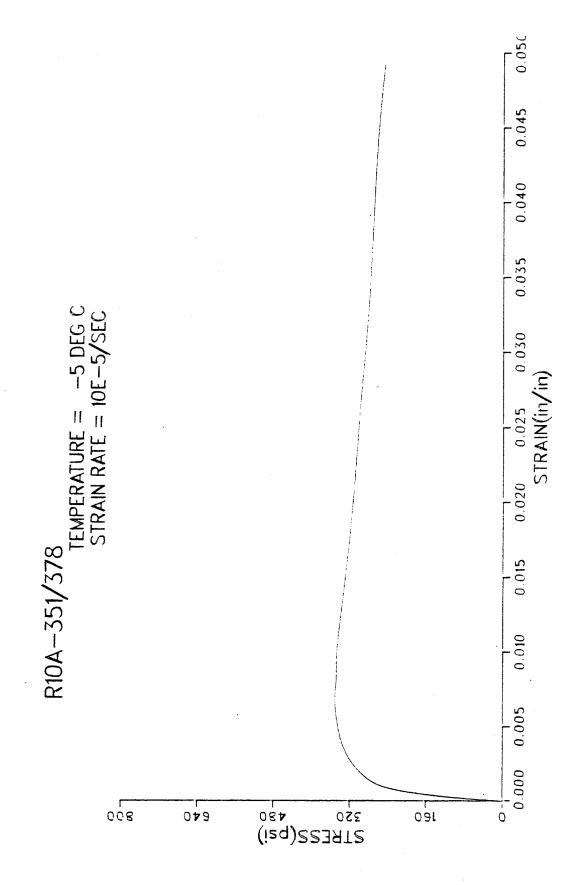



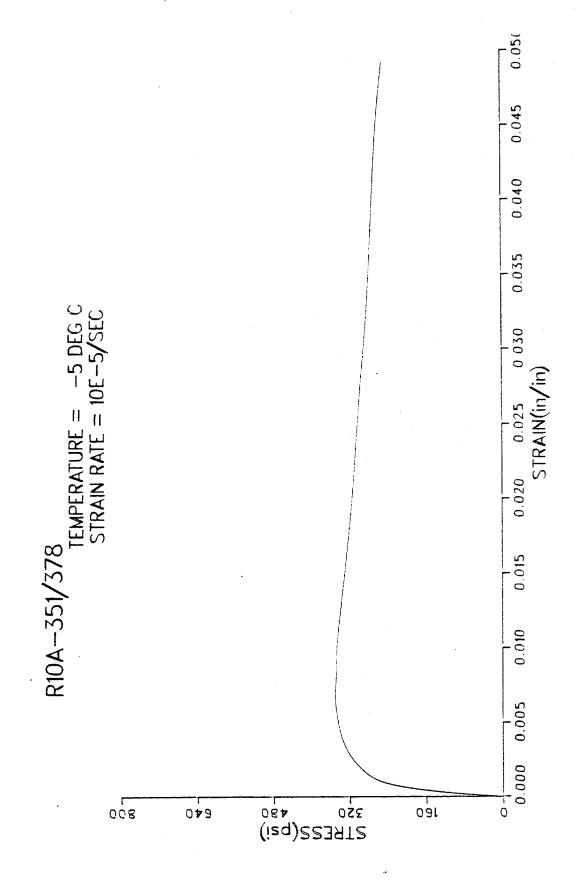



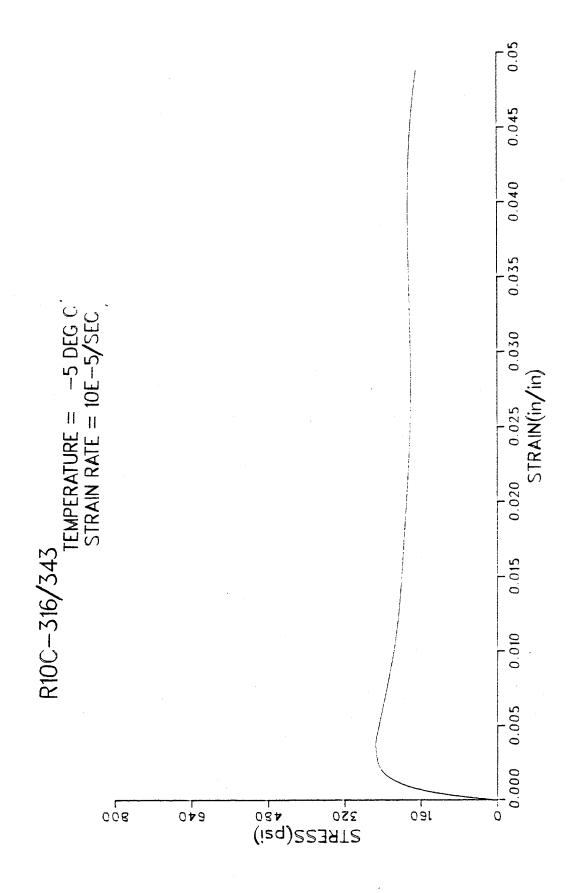



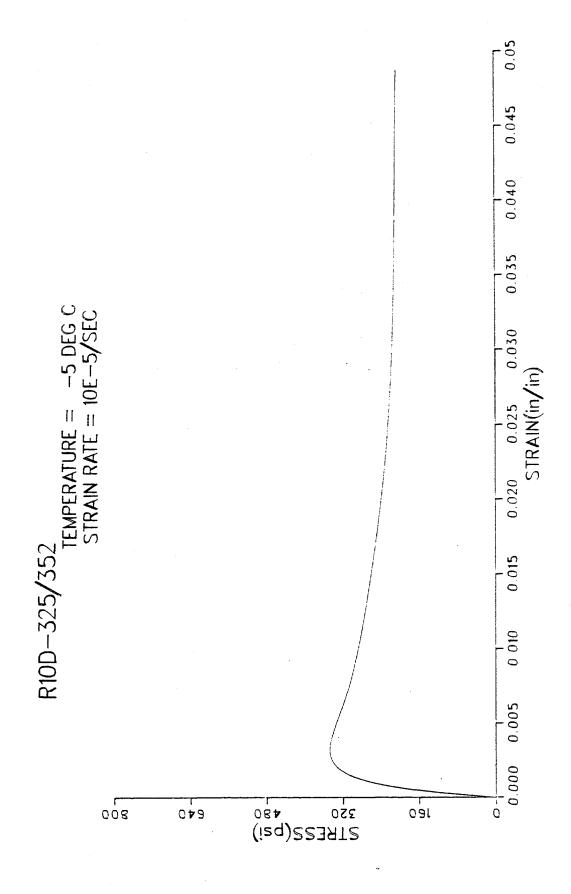



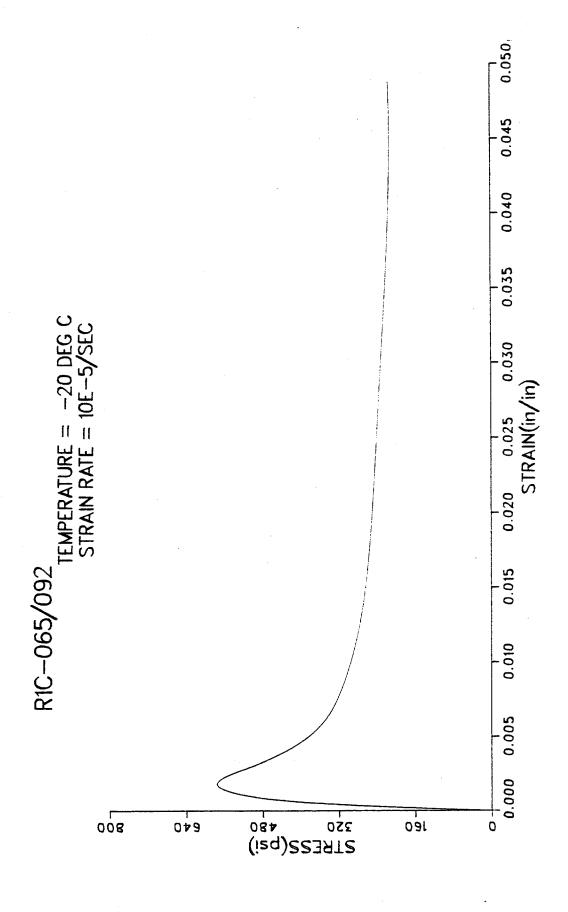


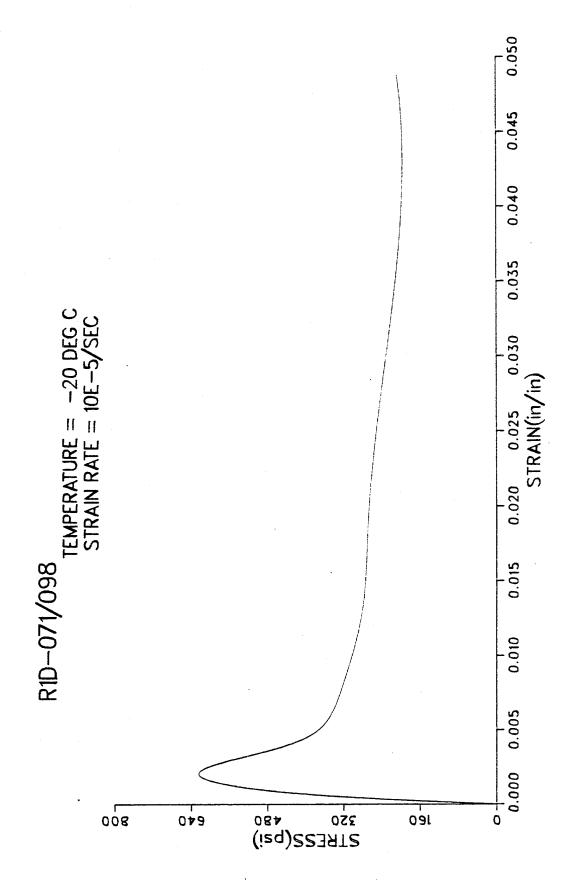


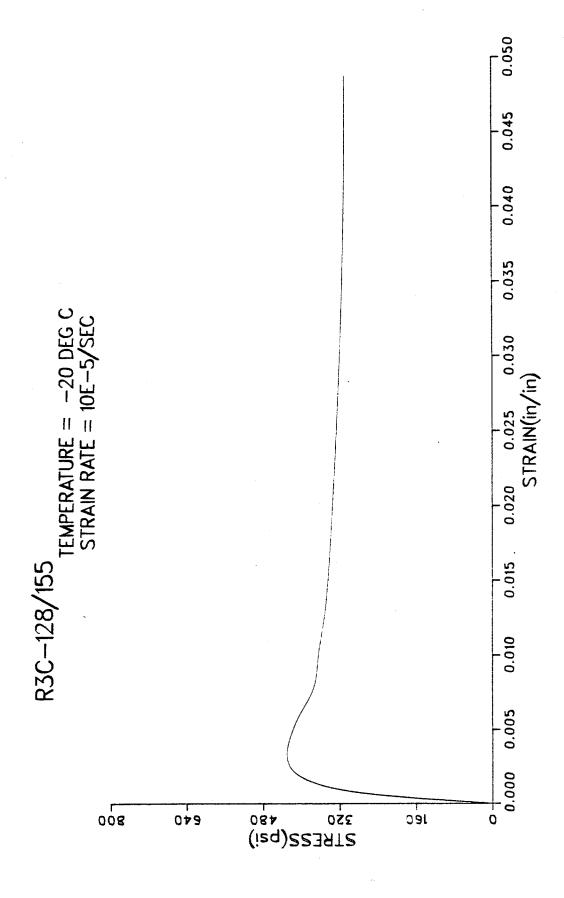


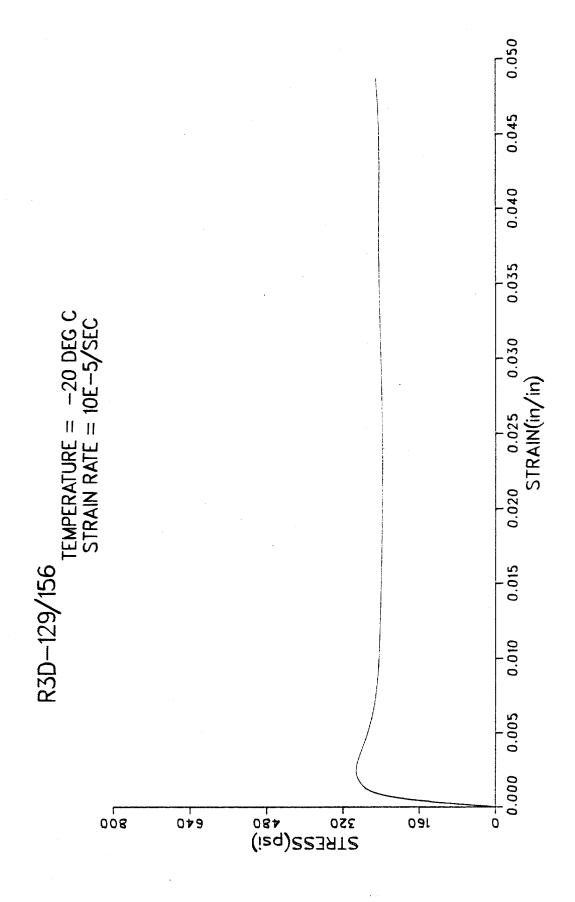


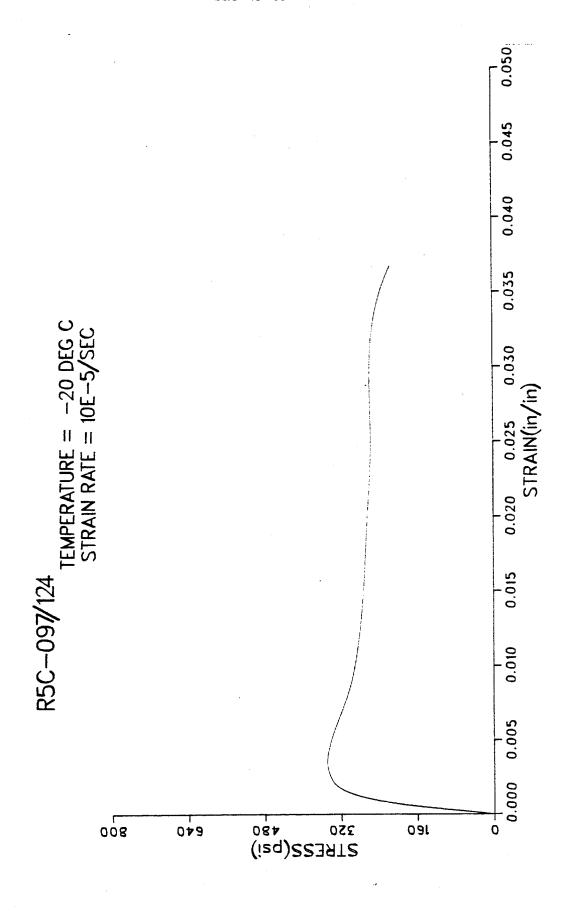


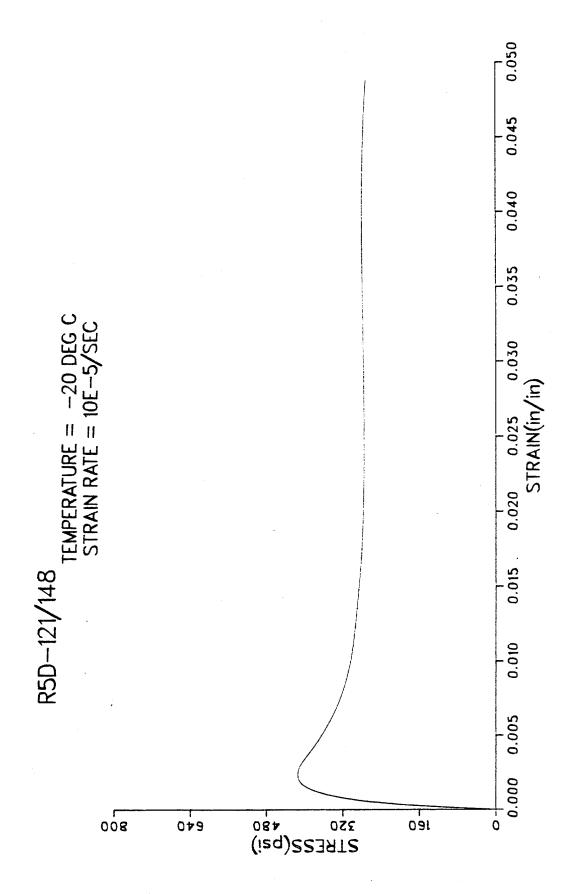


.

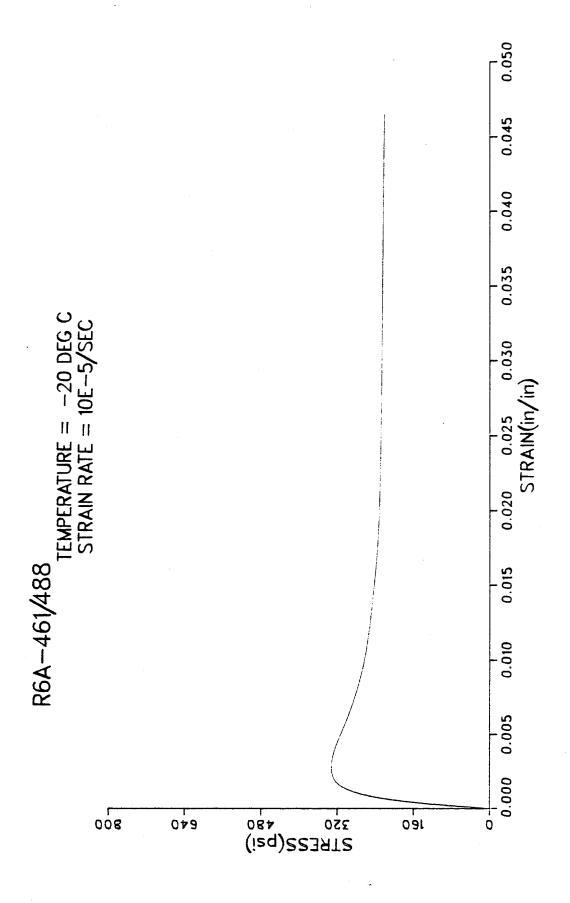

C-73 BRC 45-85

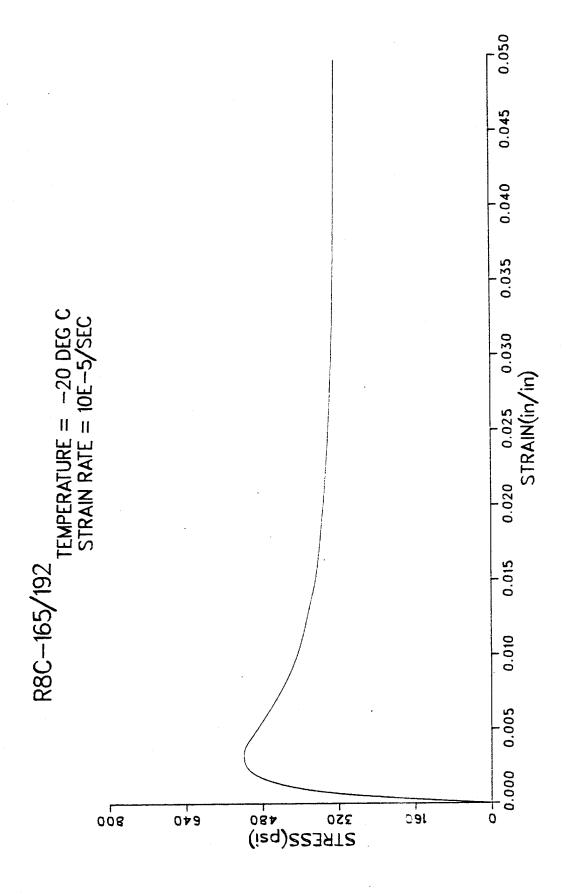

this grown and anterior and the first contract the first contract of the first contract

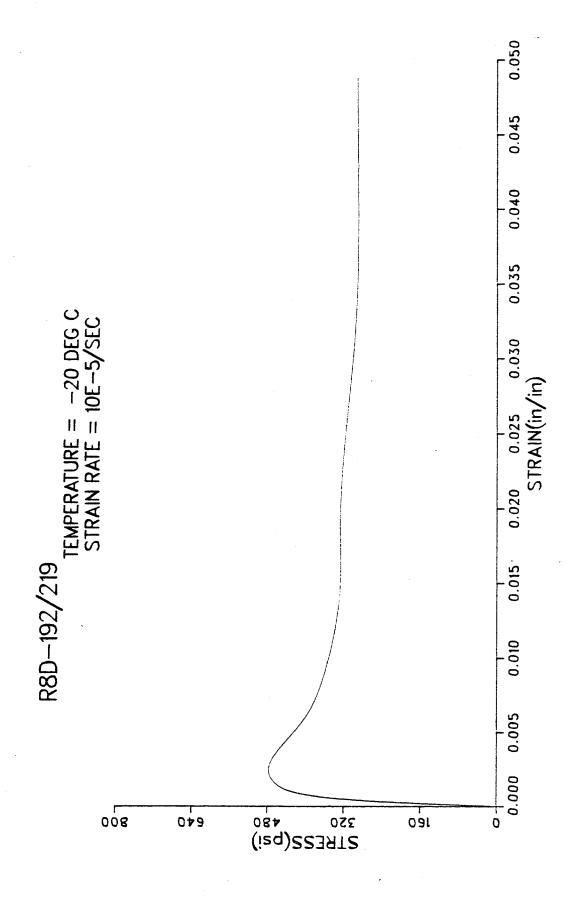

STRAIN RATE = (10E-5)/SEC TEMPERATURE = -20°C

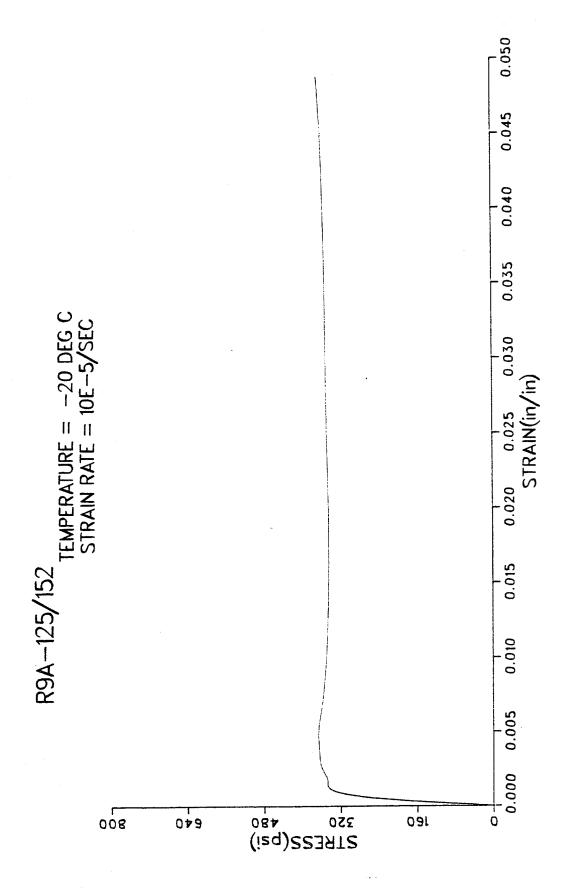

•

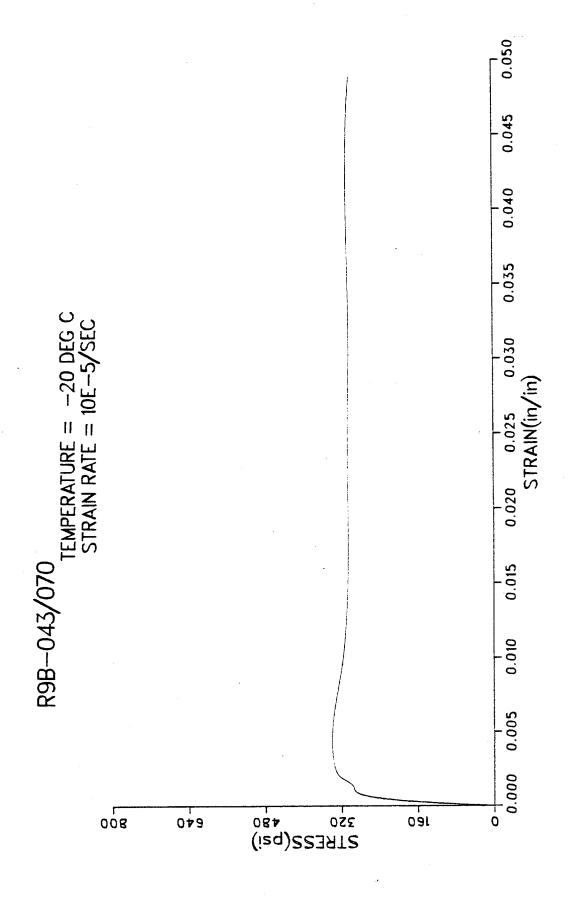


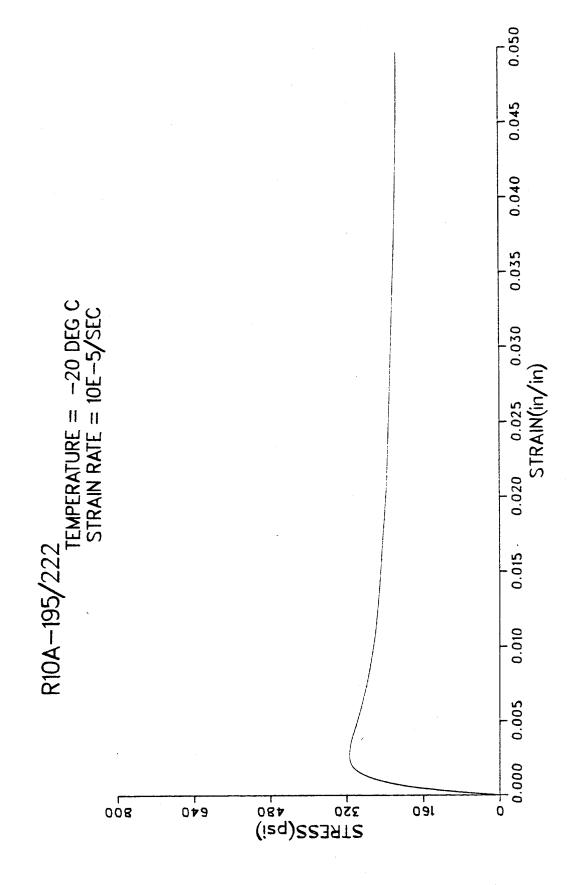



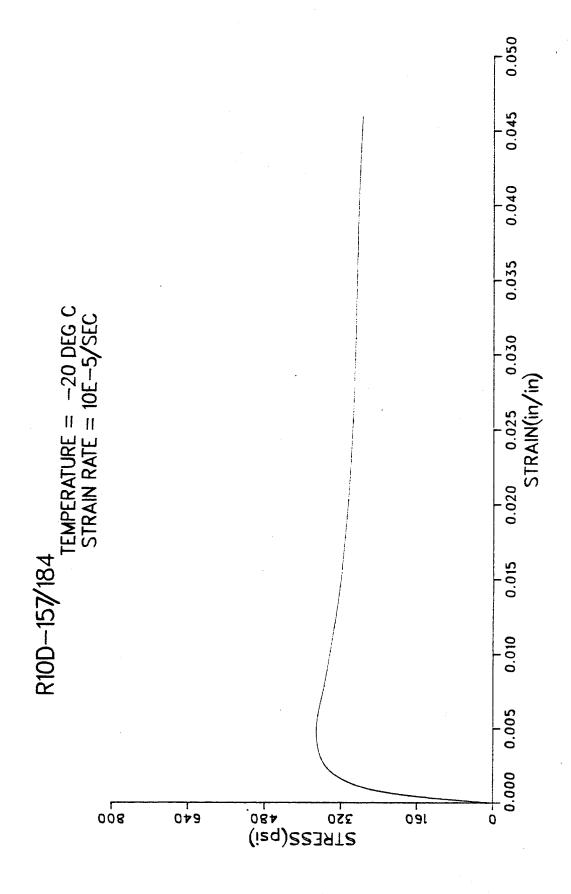



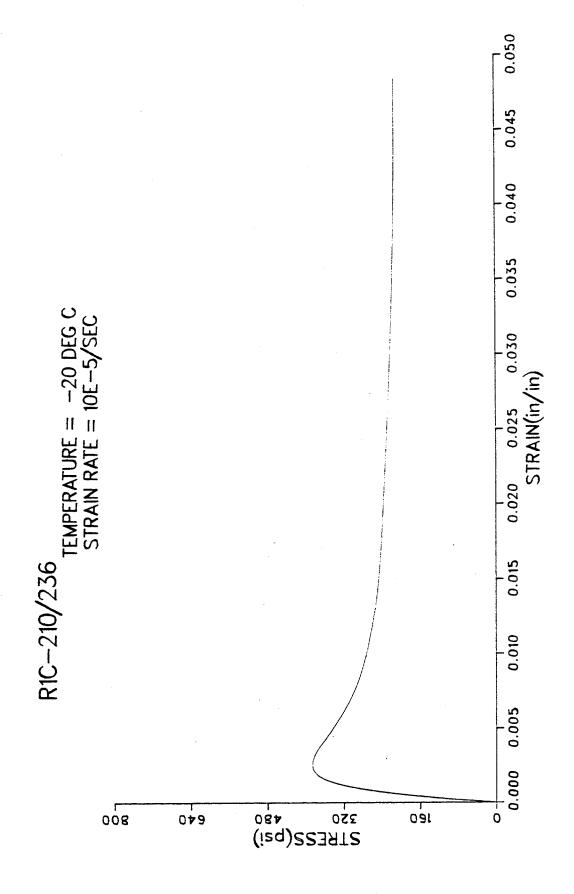



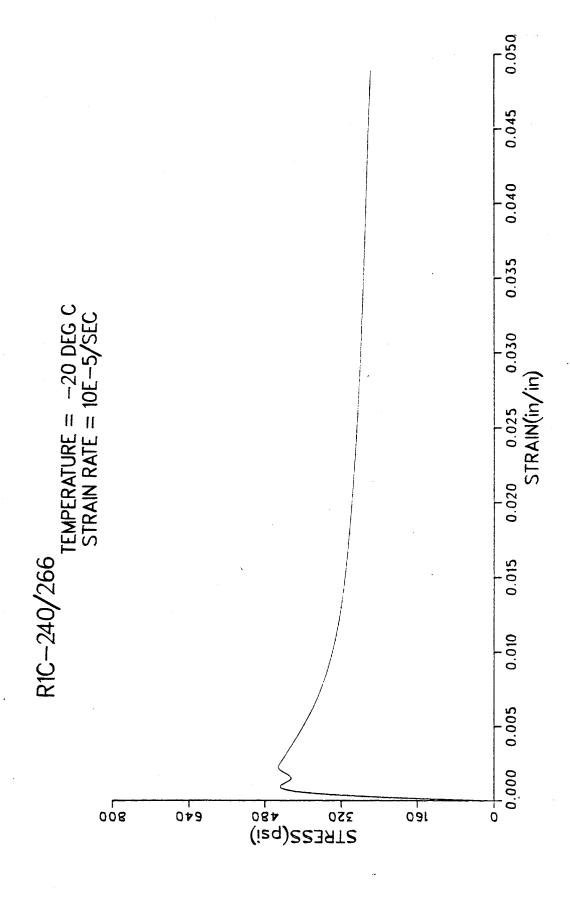



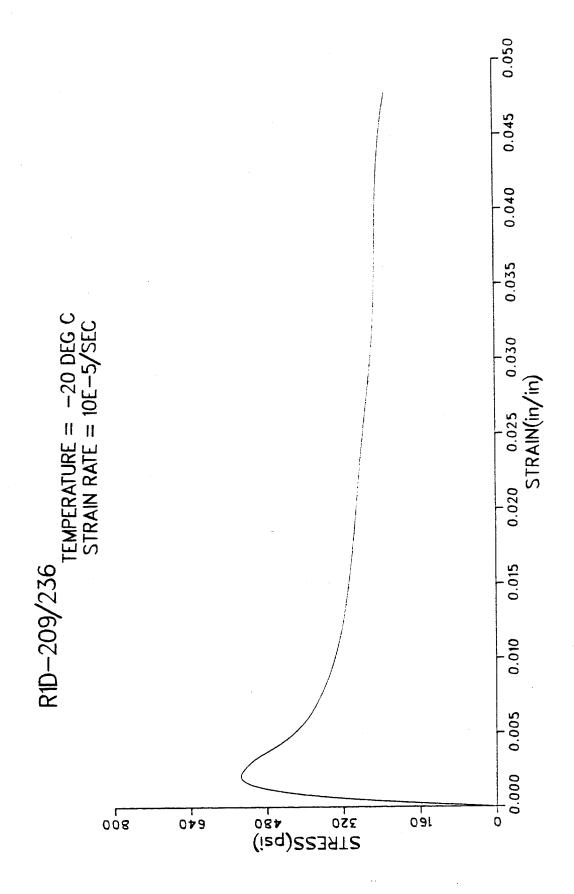



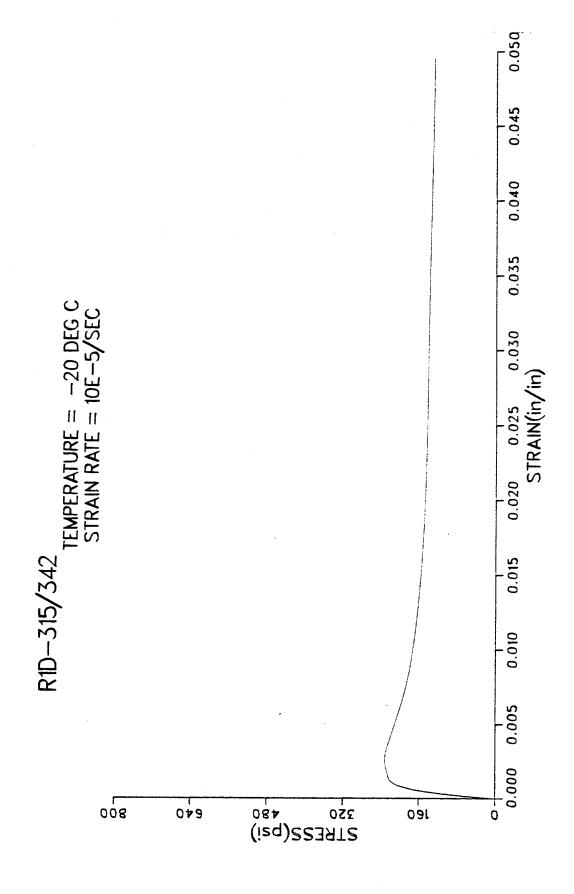



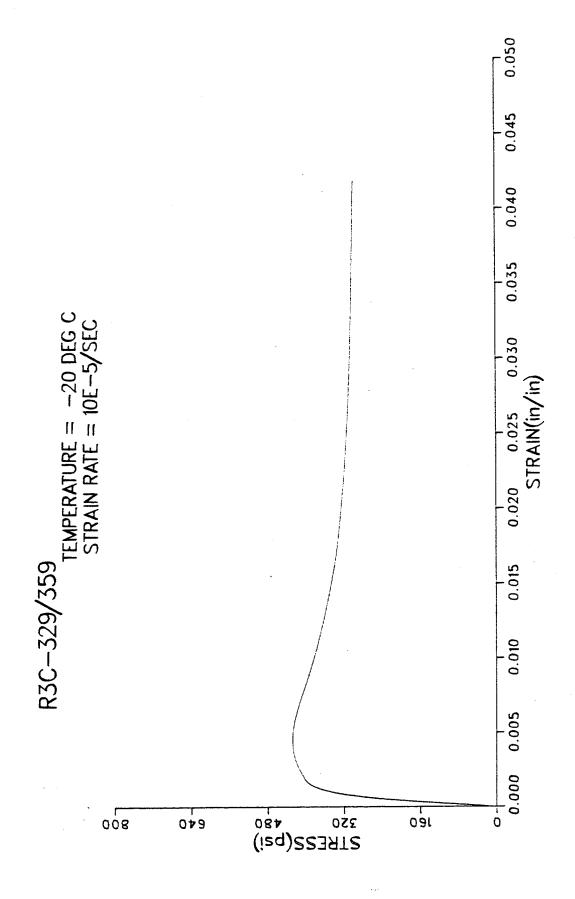



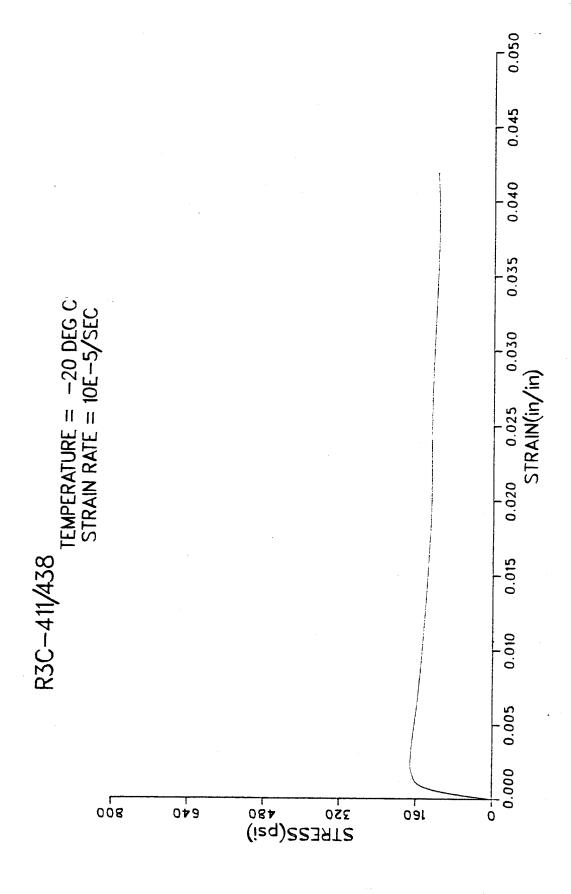



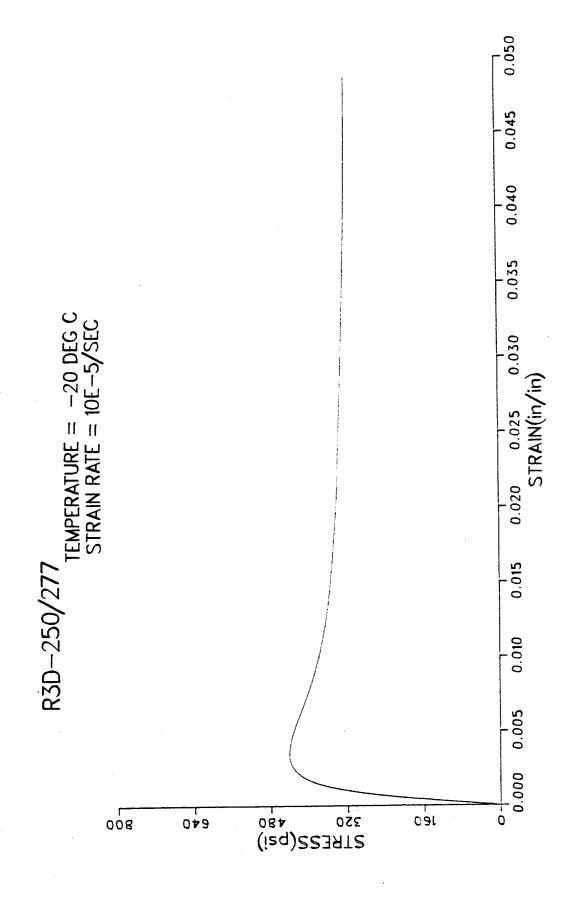



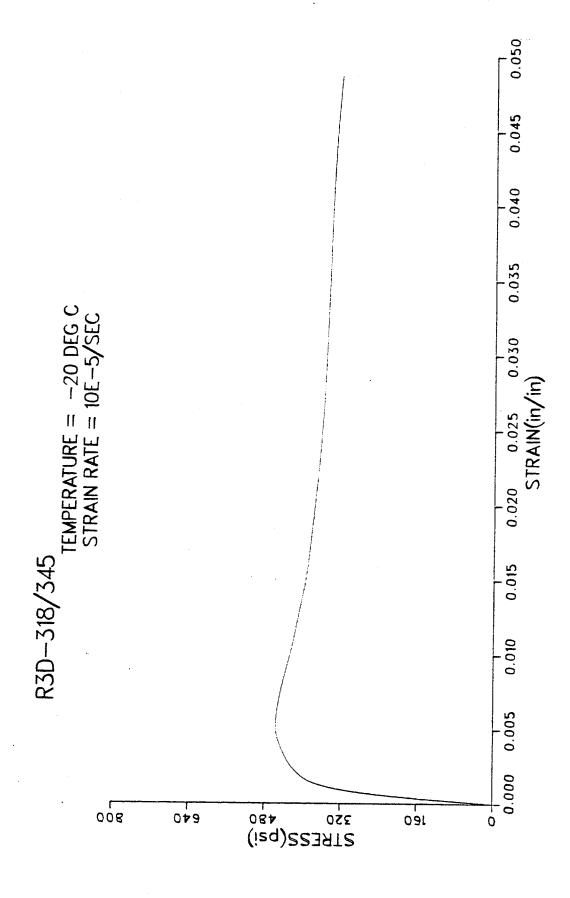



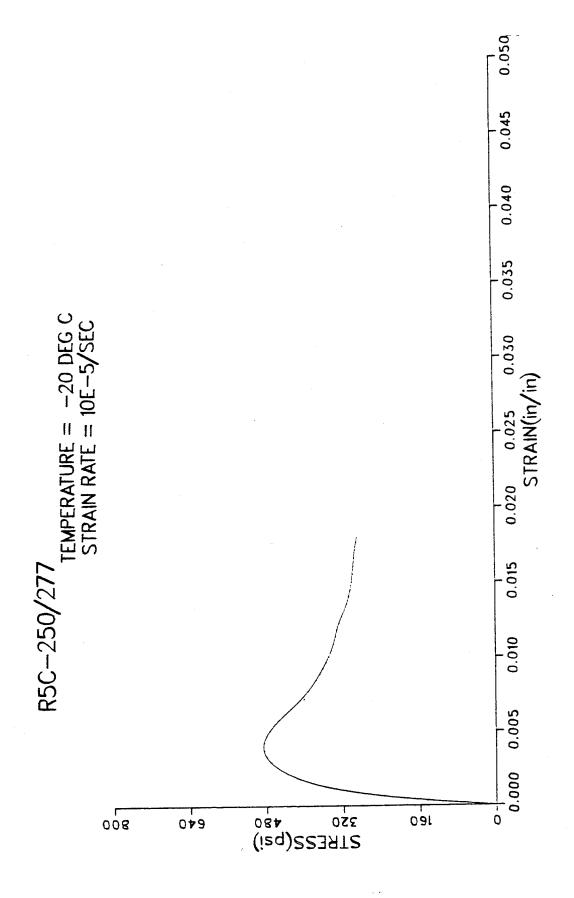



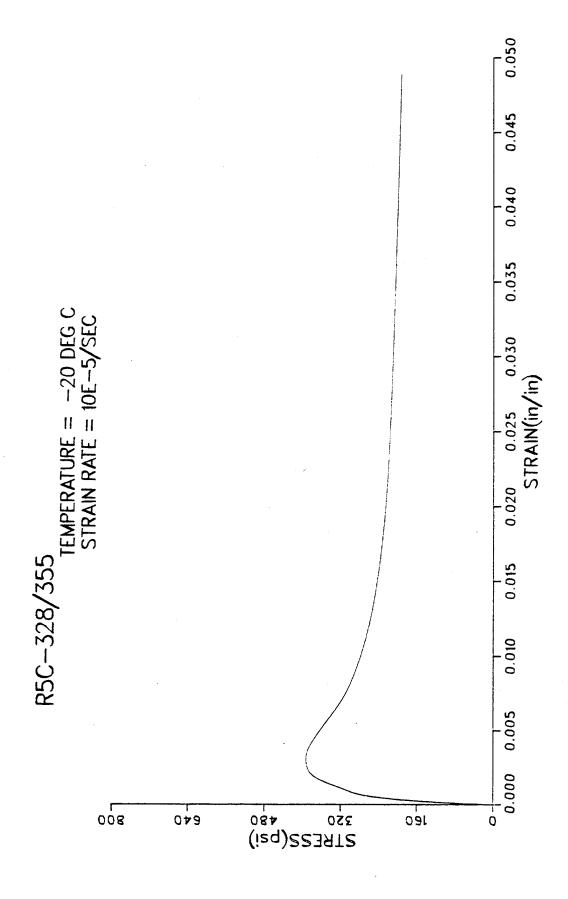



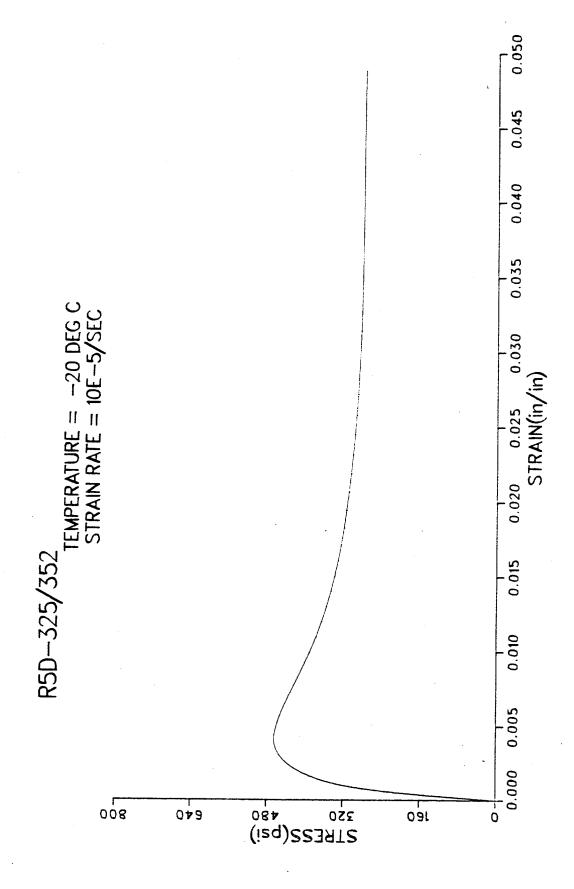



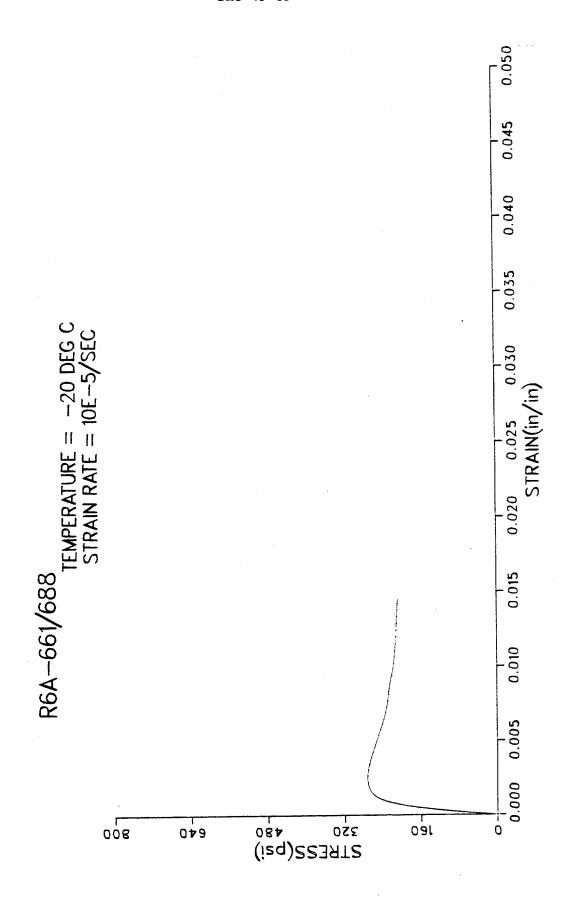



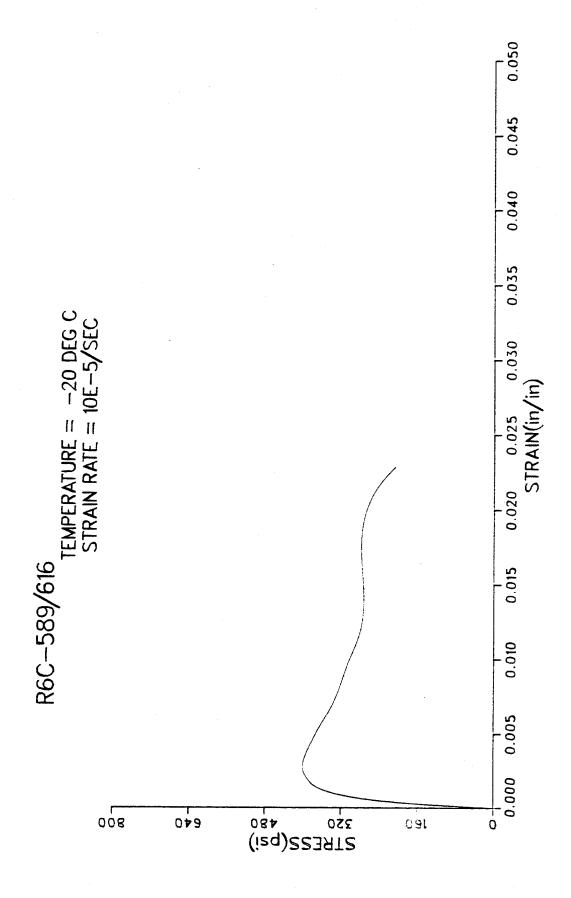


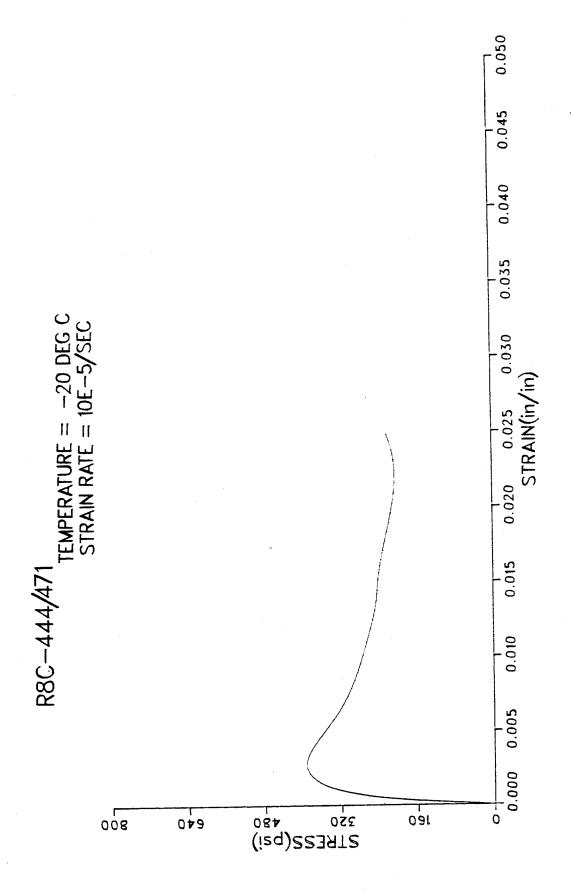



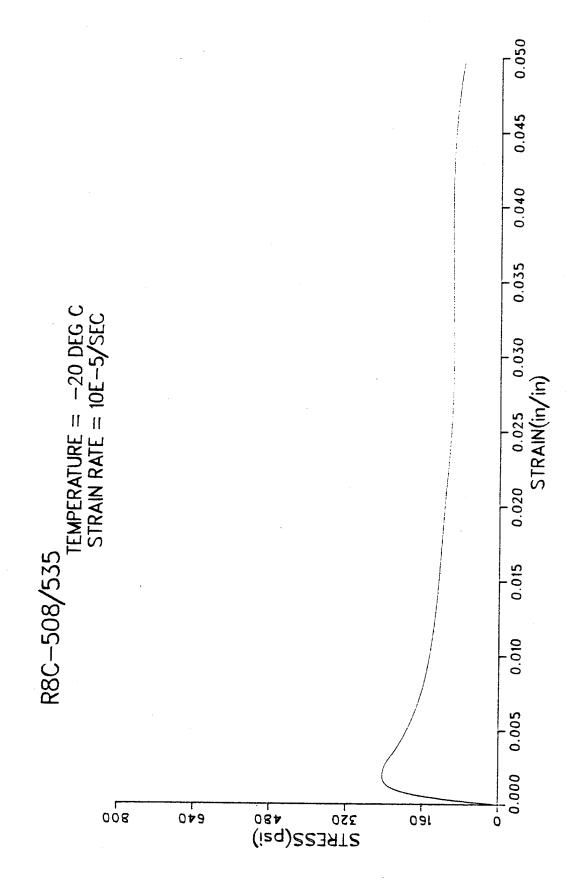


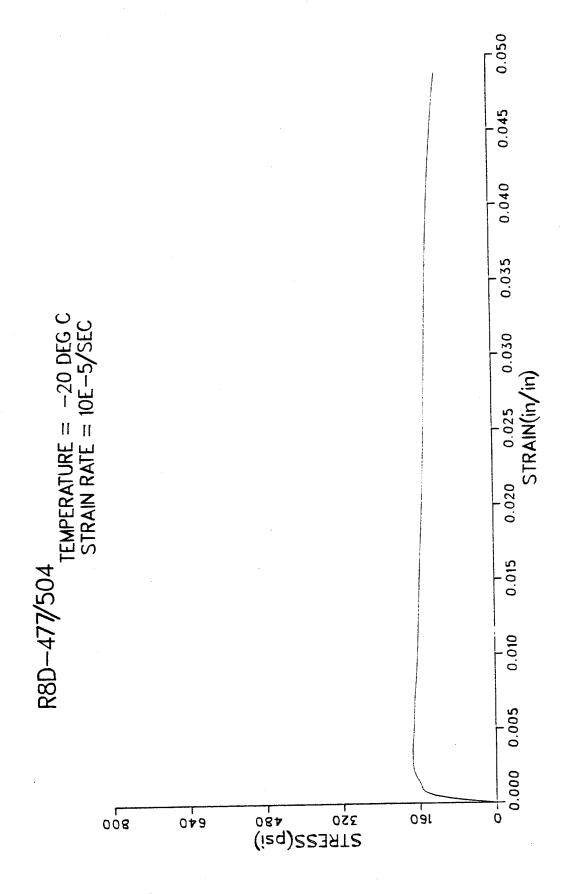



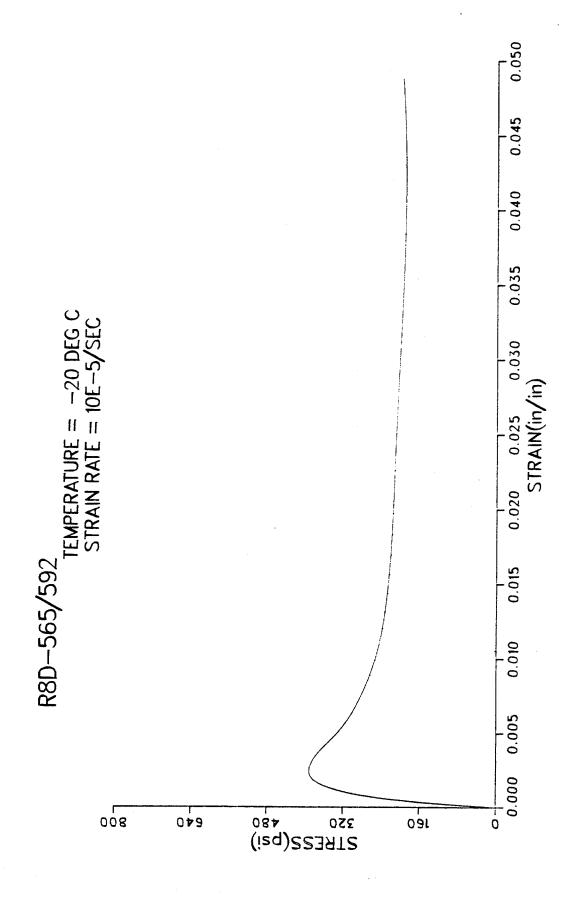



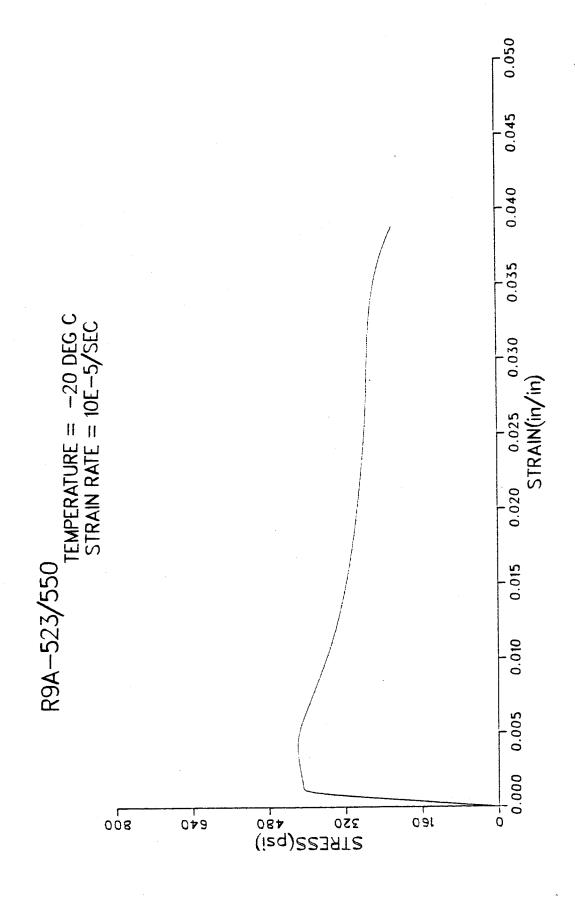


4-4 ... 41-8.

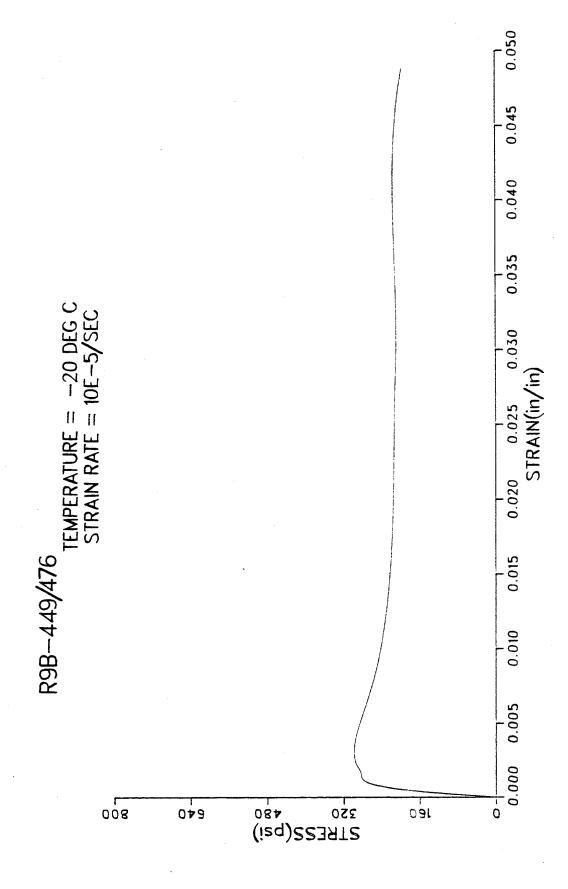


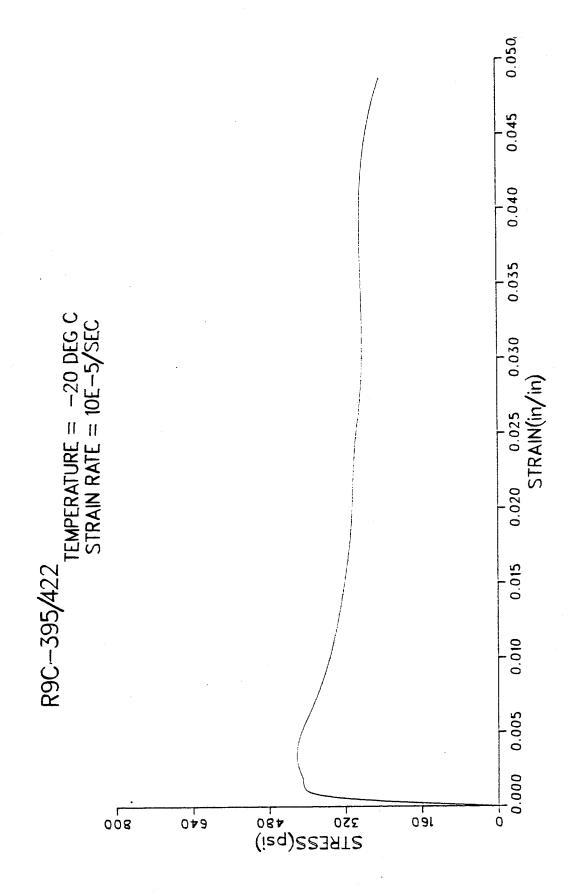



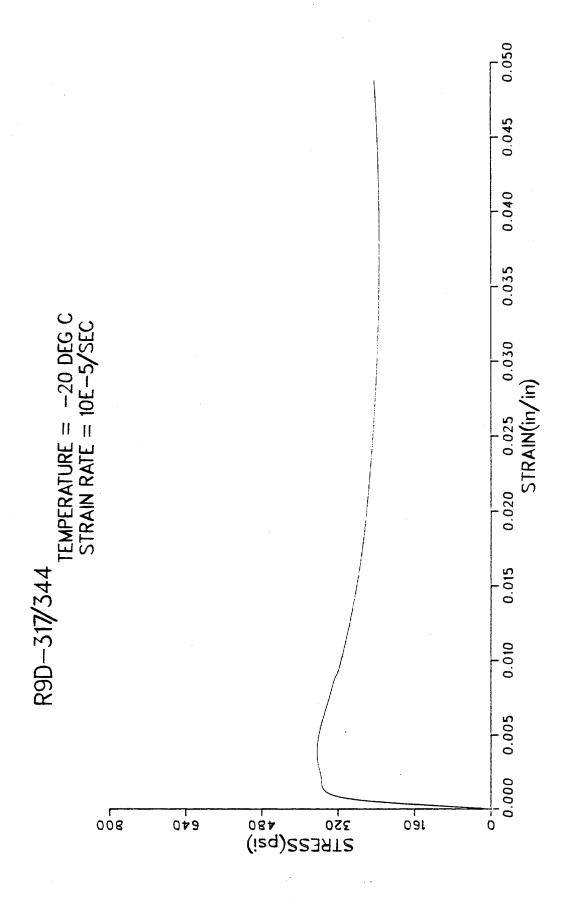



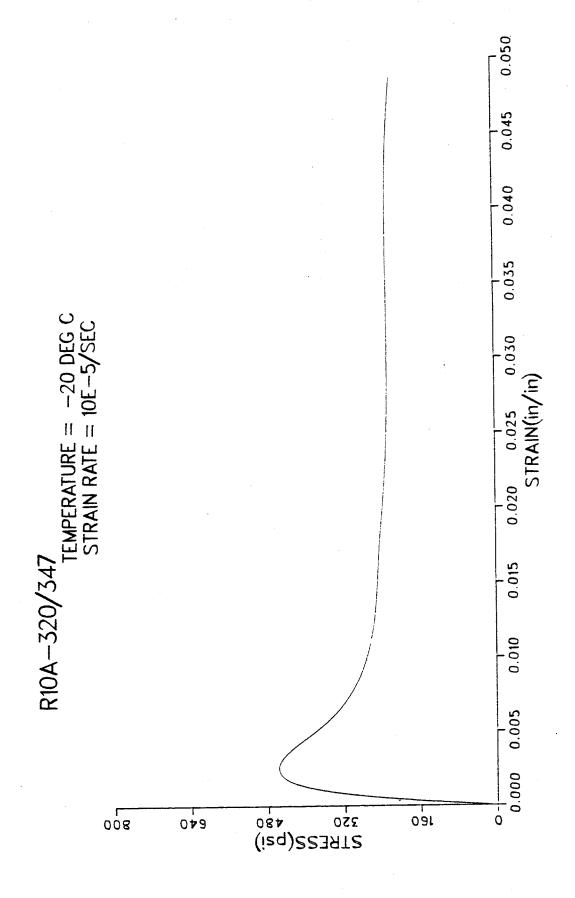



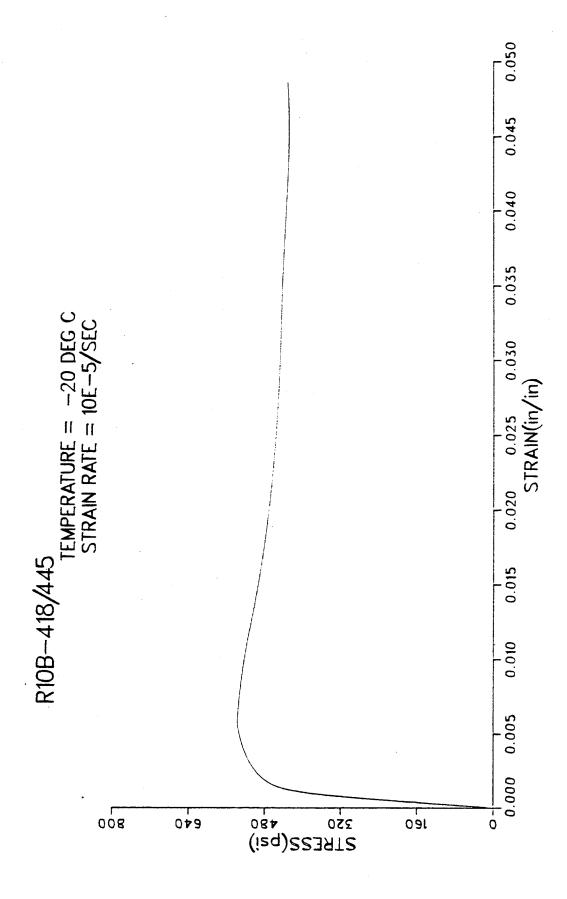



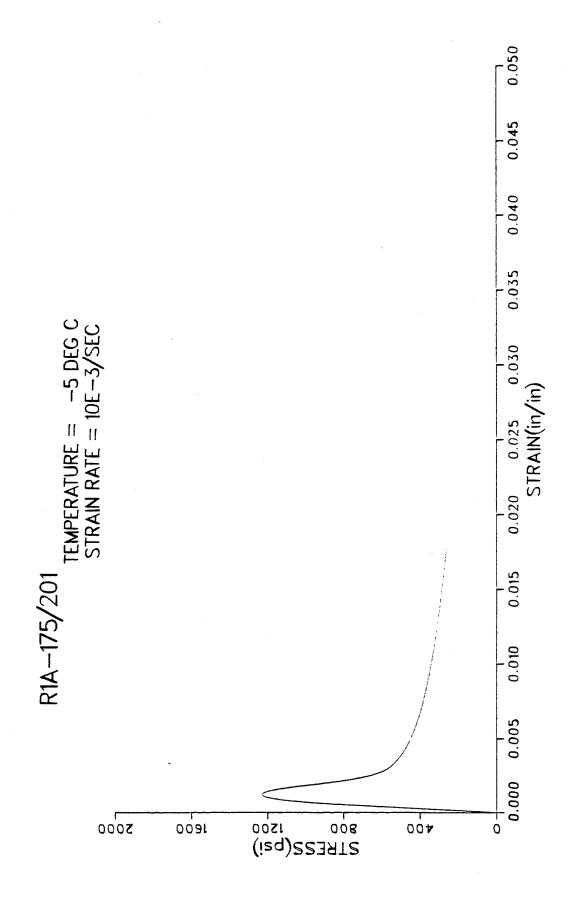


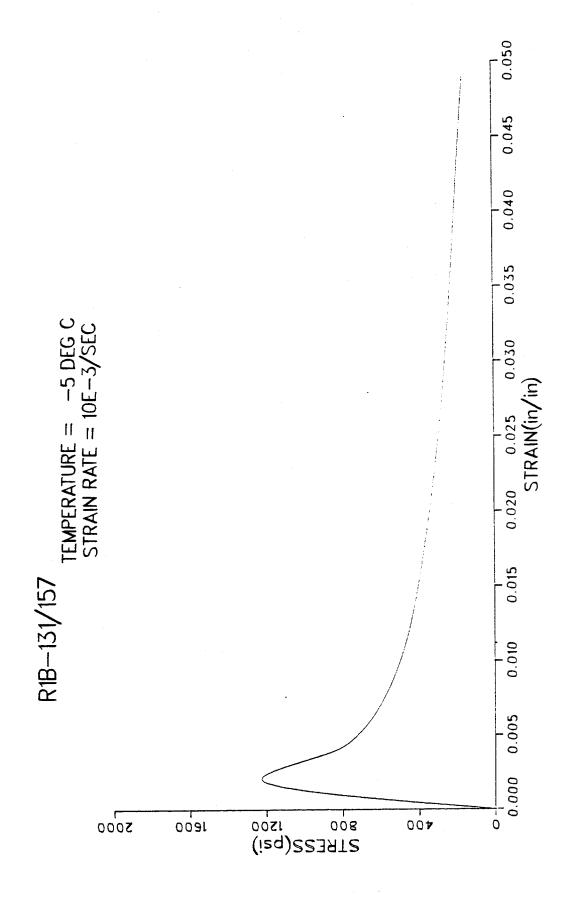


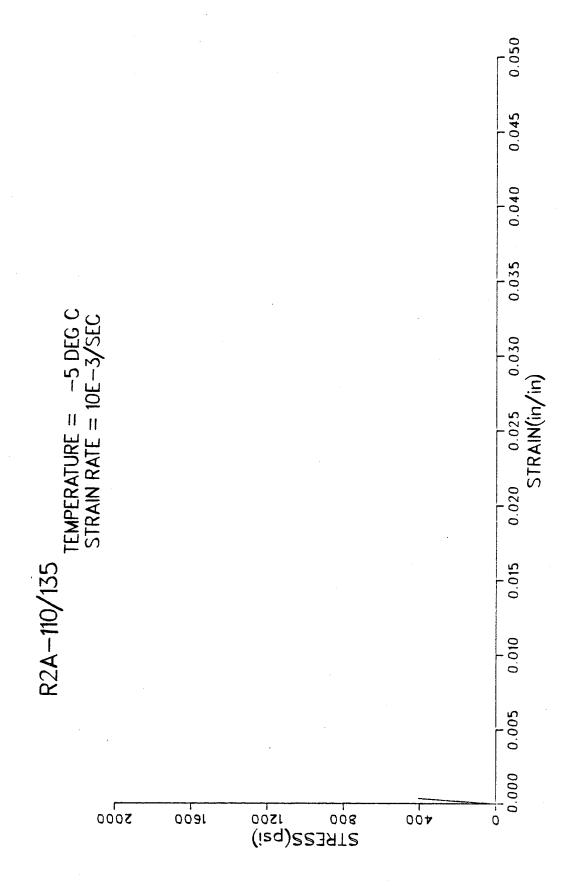




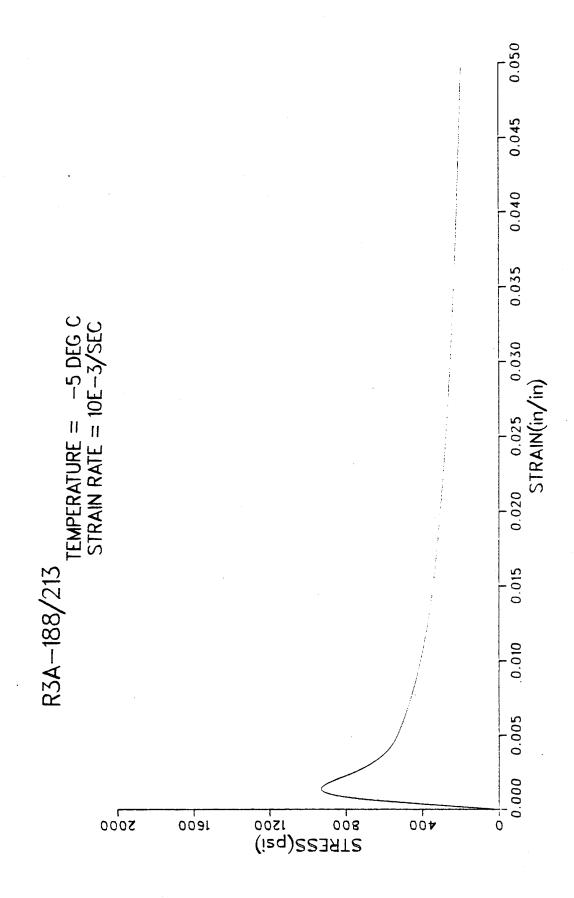


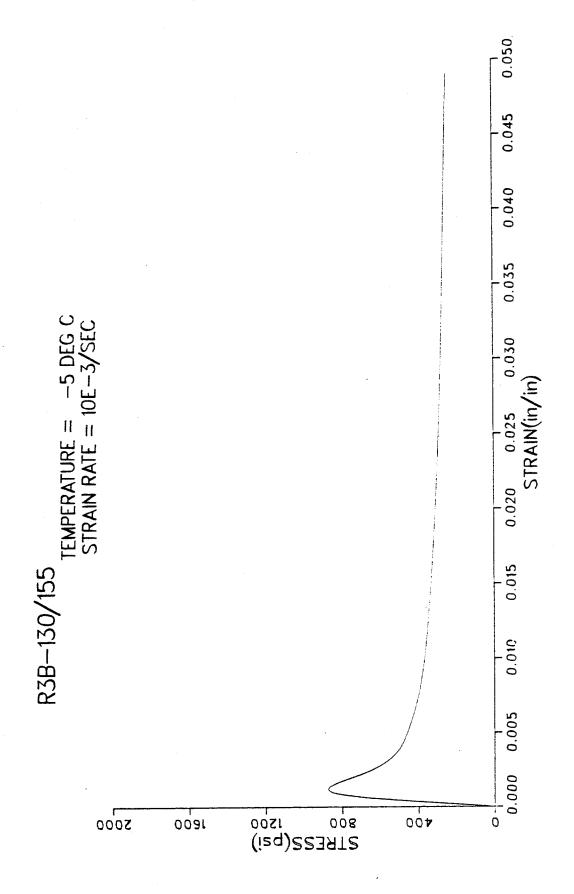


C-113 BRC 45-85

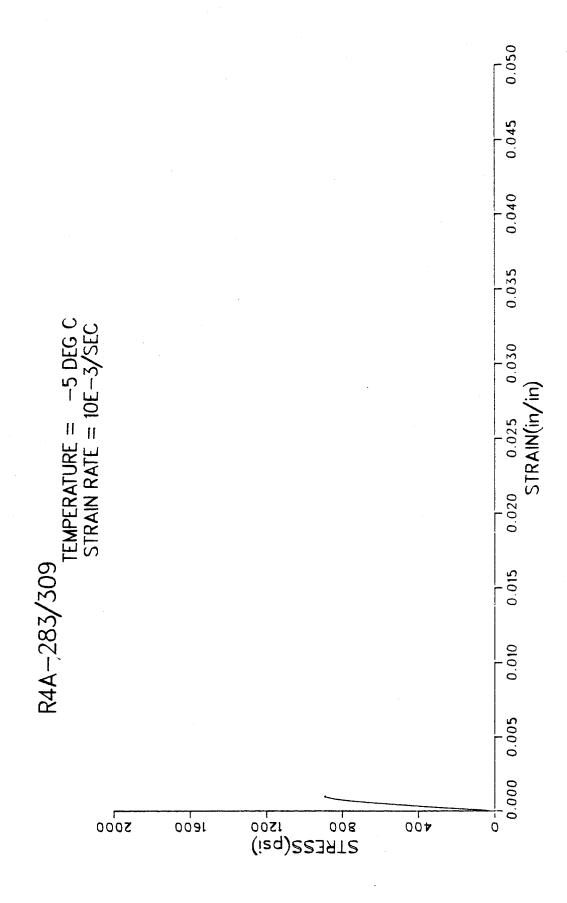

STRAIN RATE = (10E-3)/SEC TEMPERATURE = -5°C

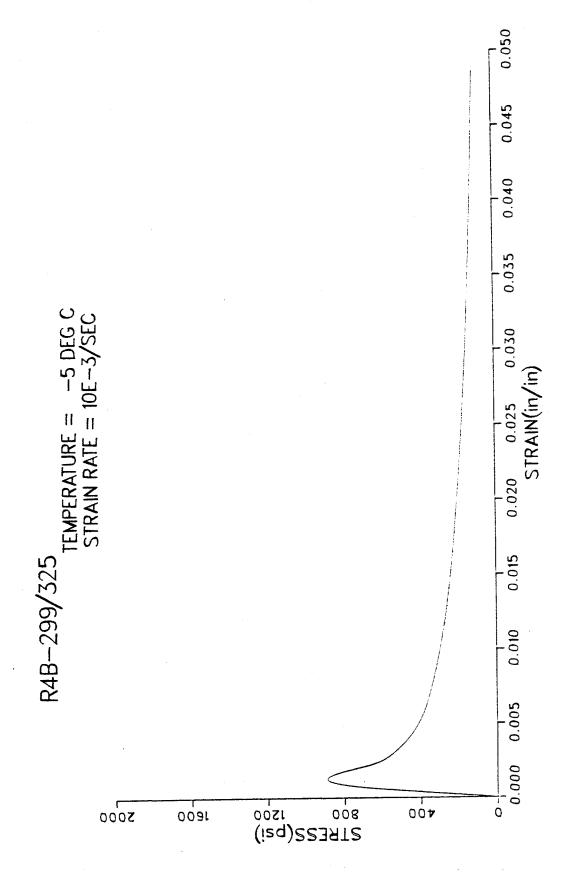

-

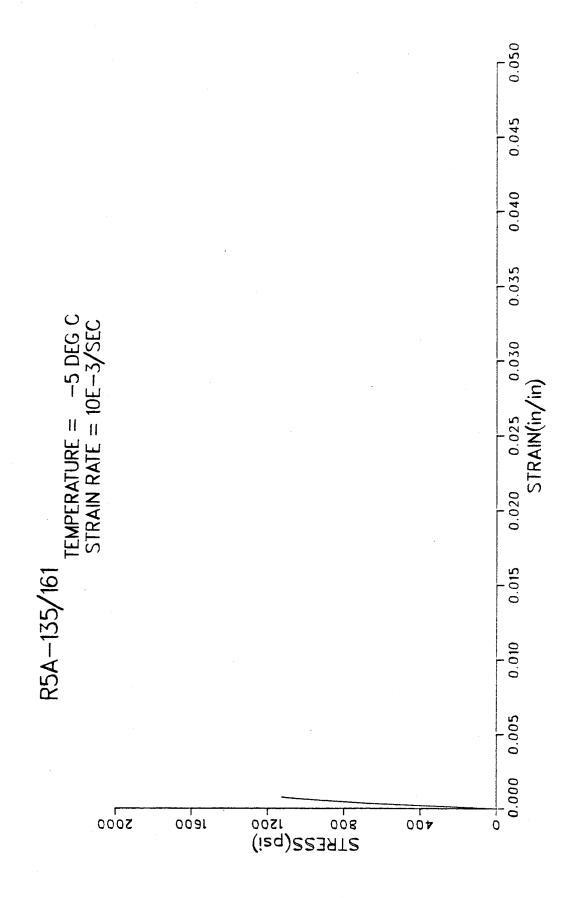
ž

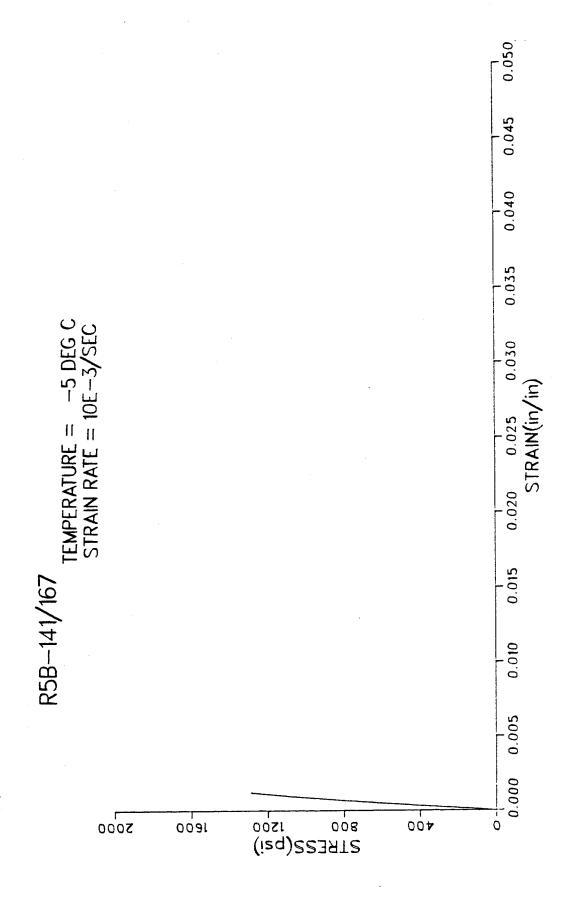

.

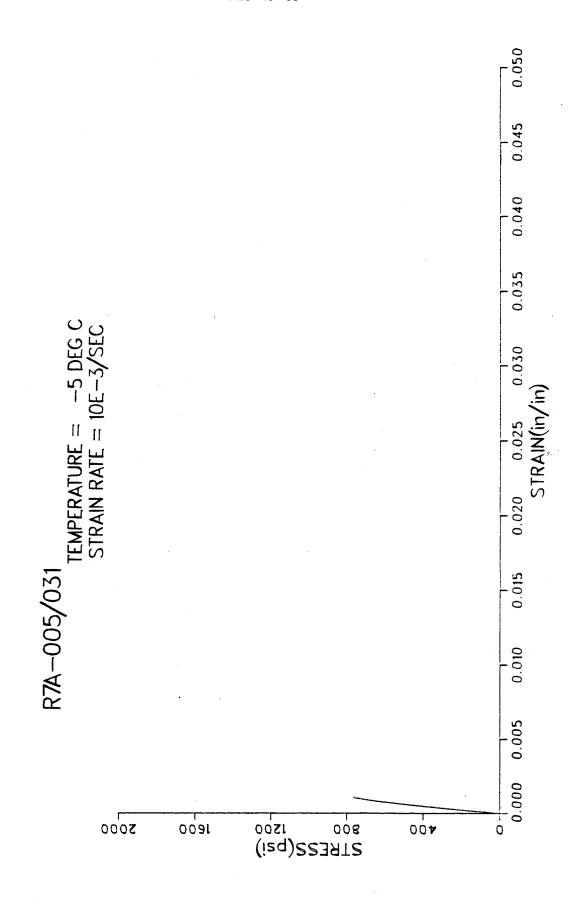


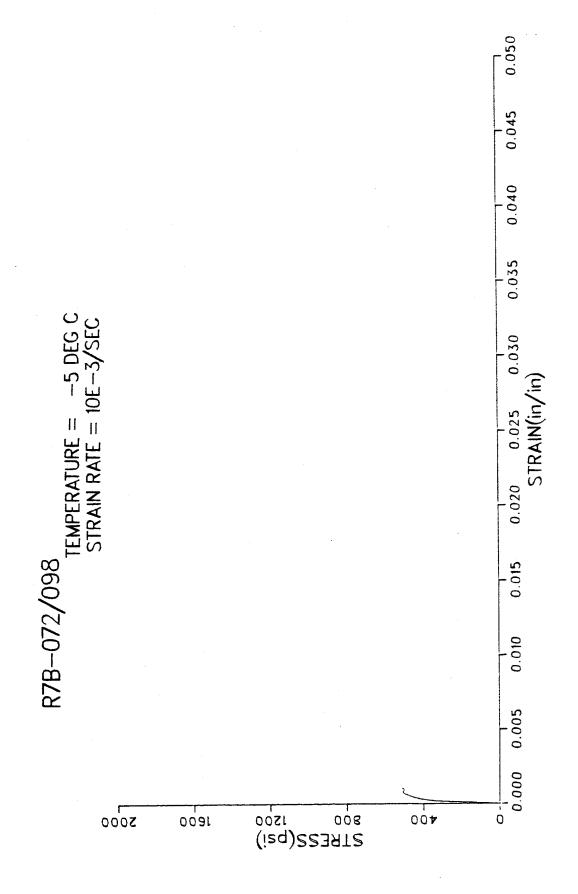



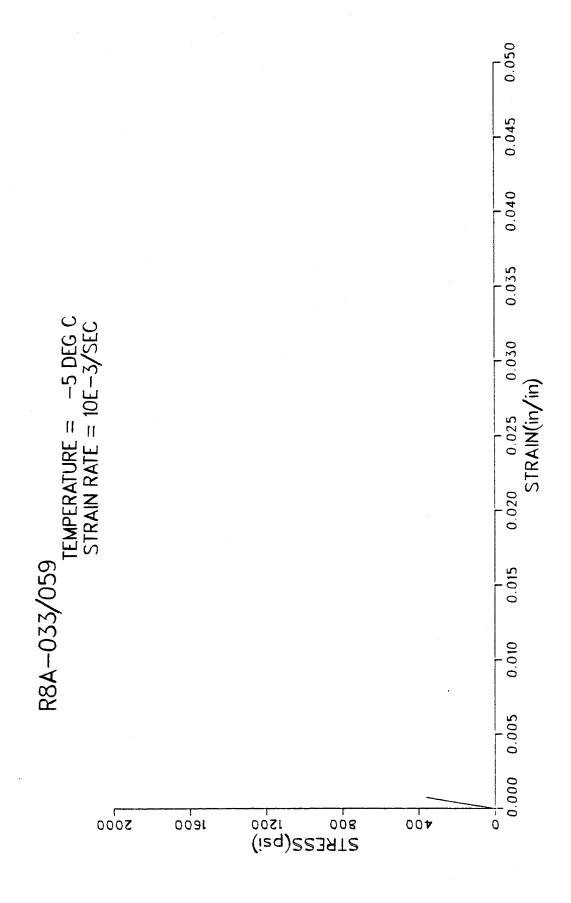



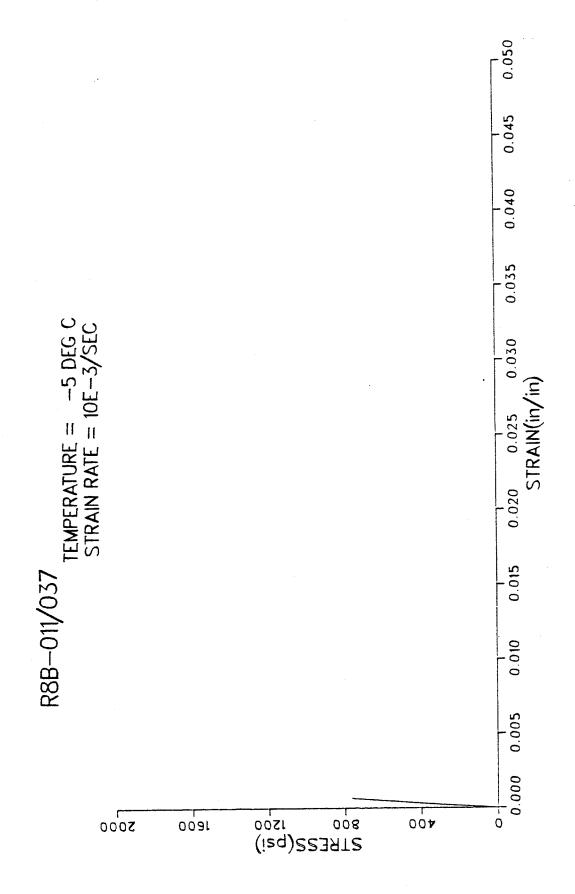



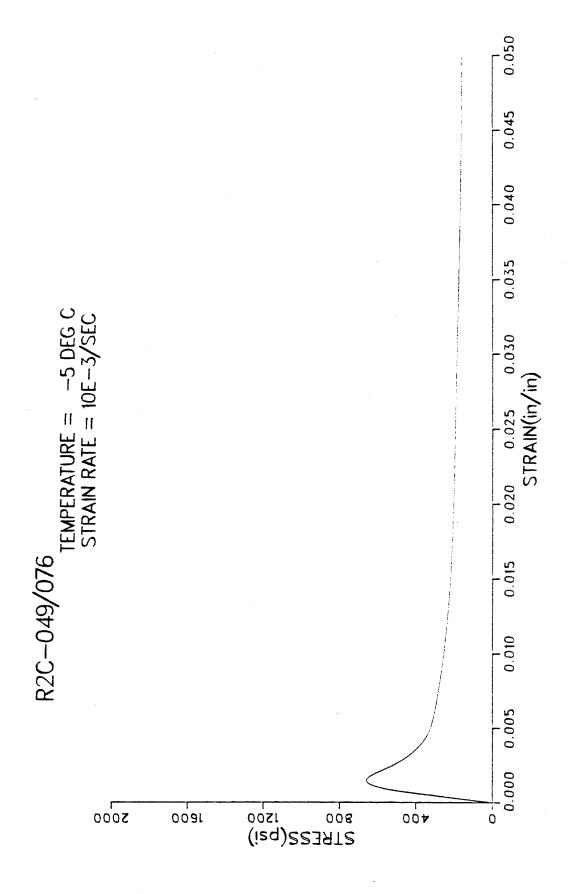



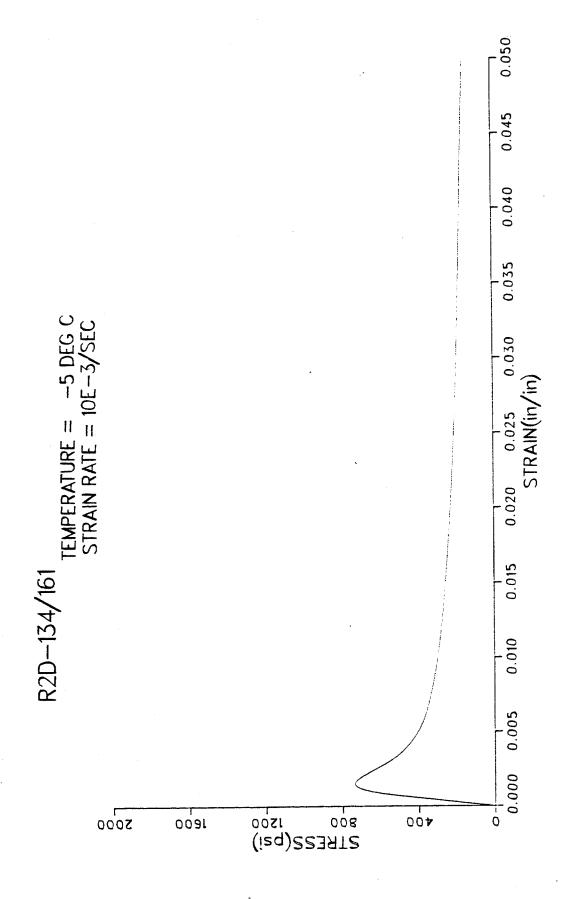



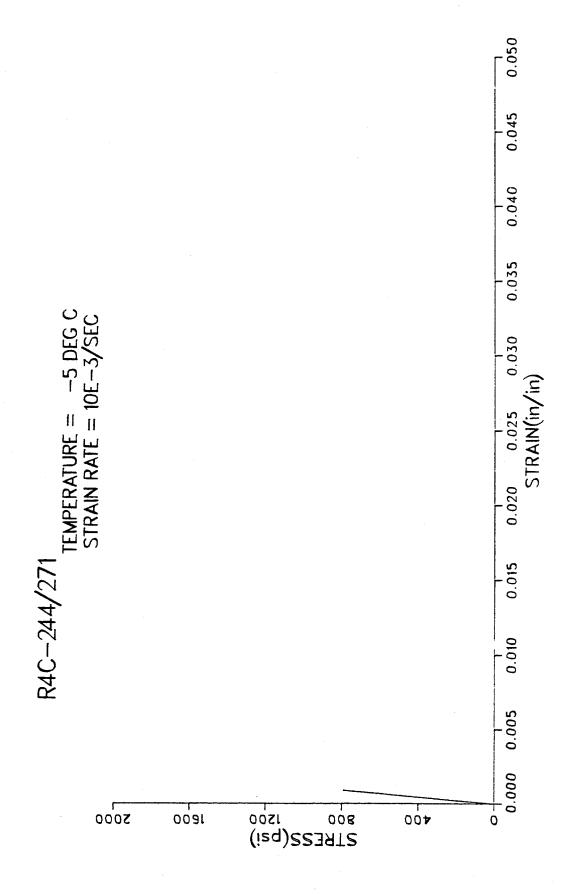



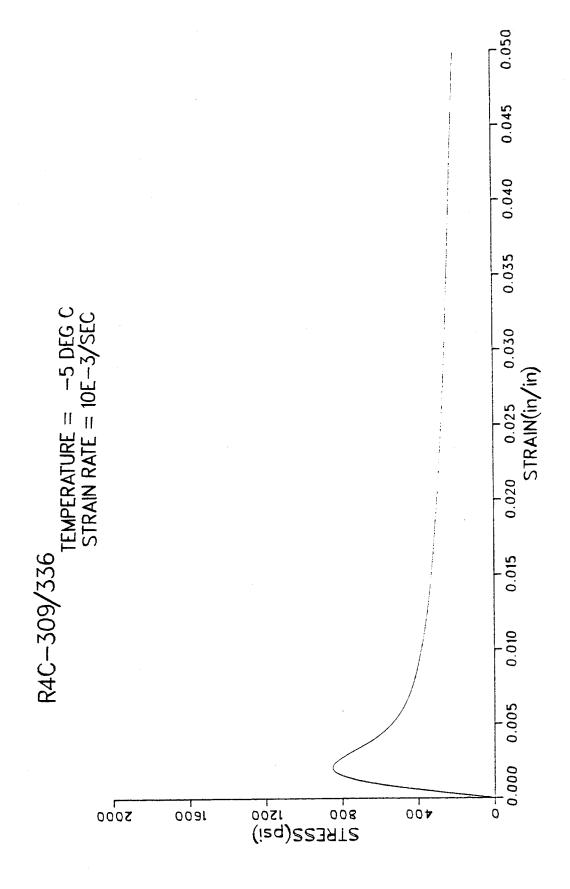



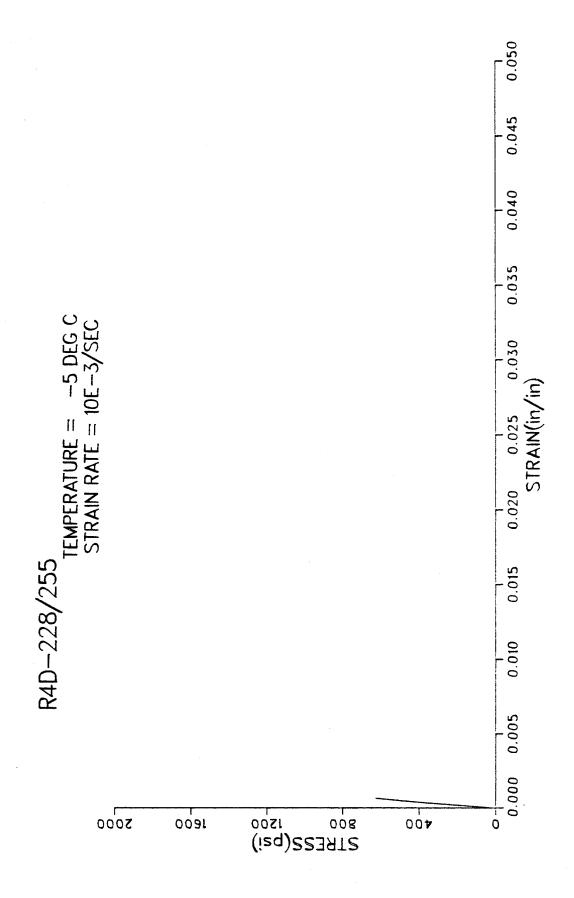



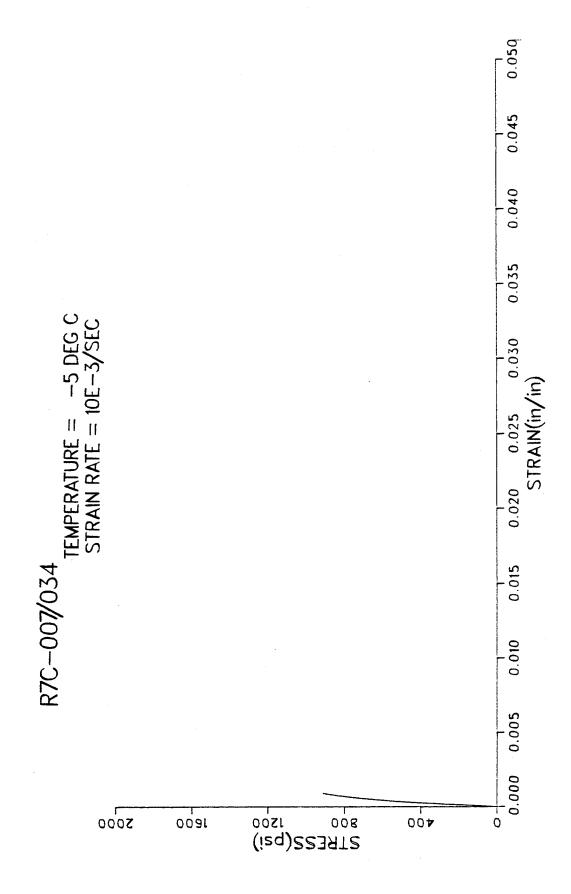



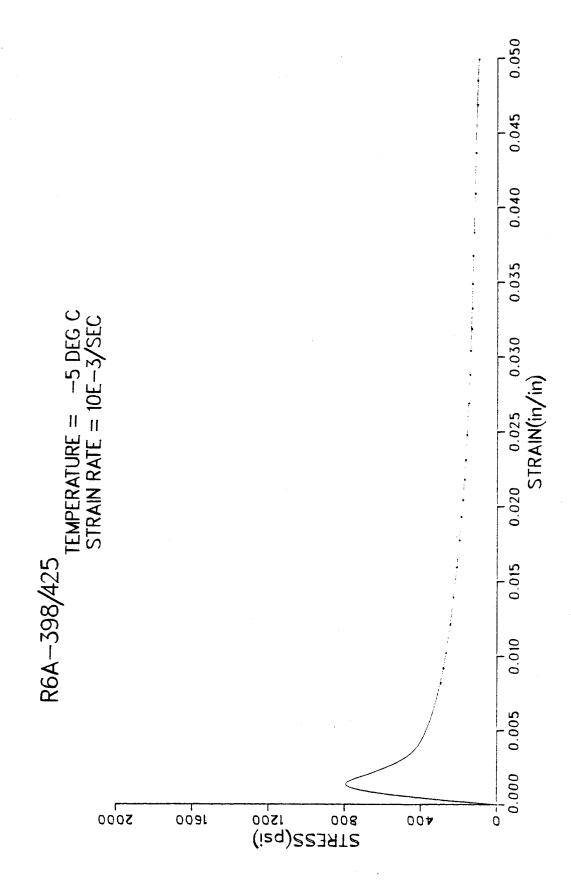



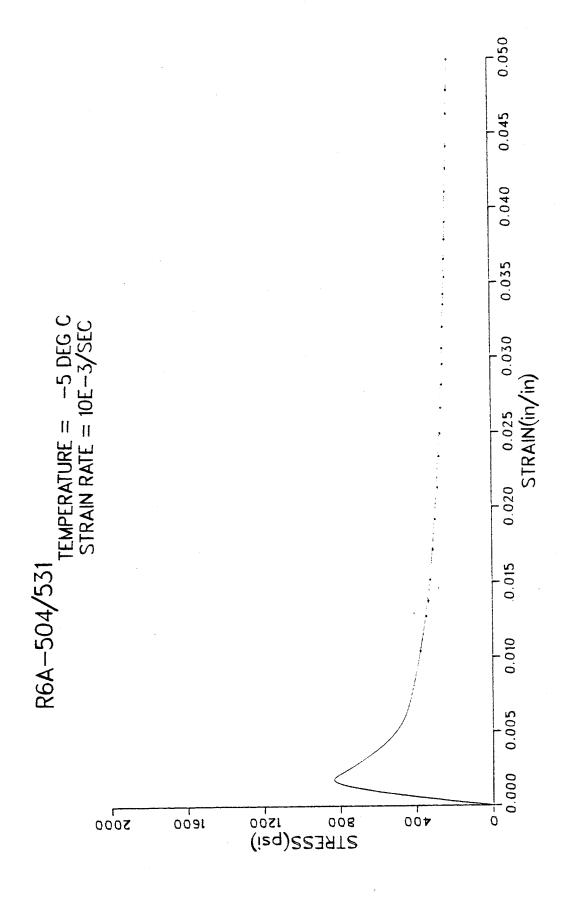



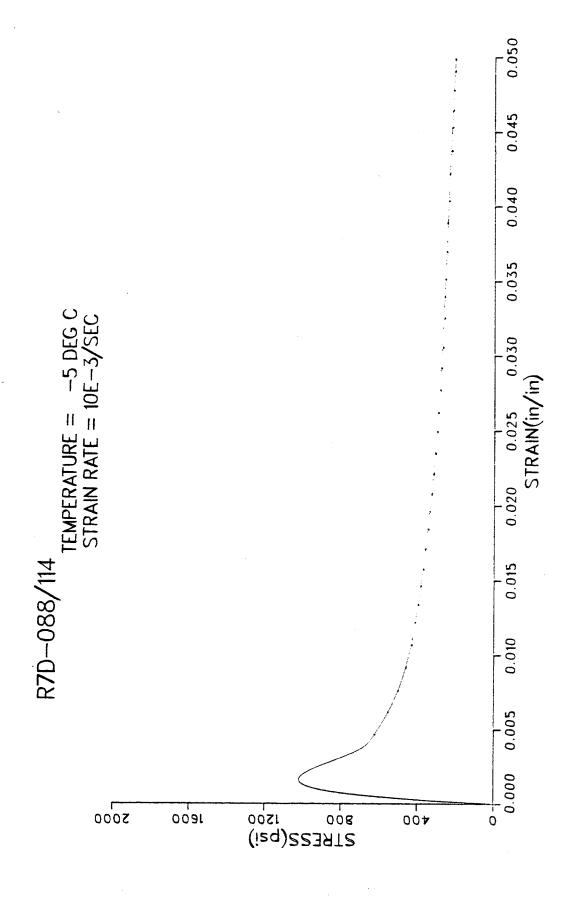



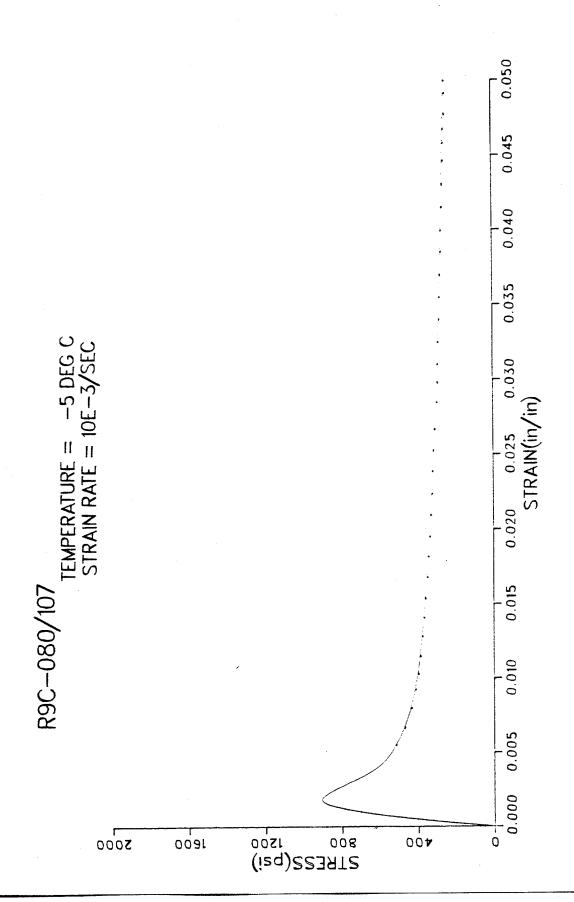



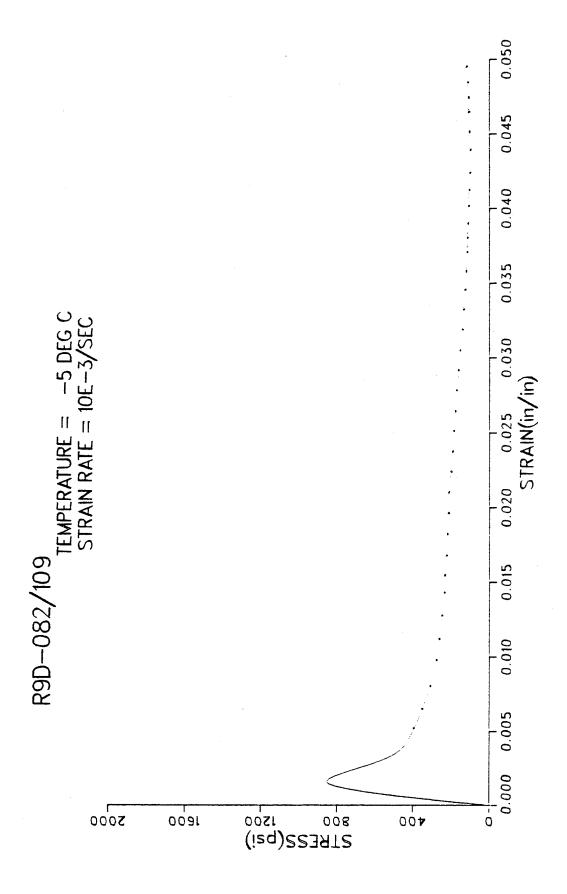



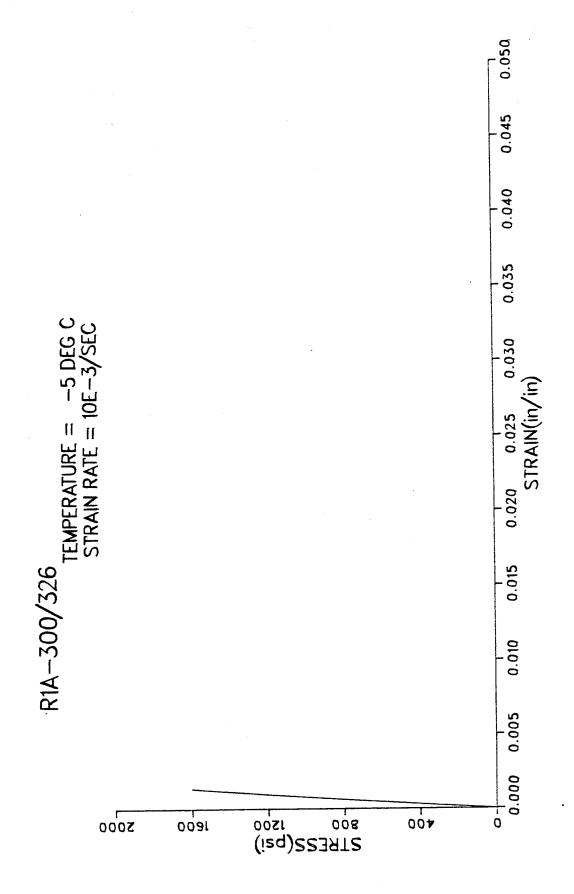



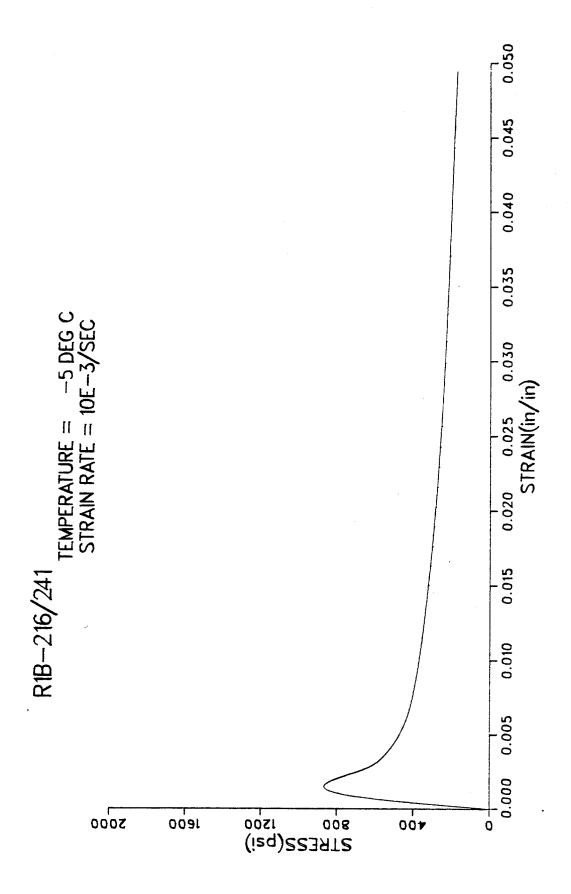



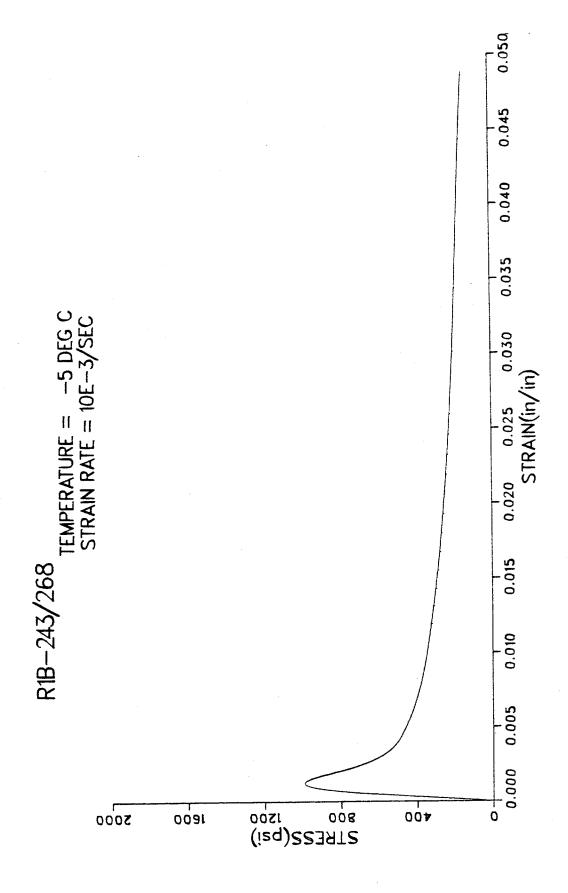



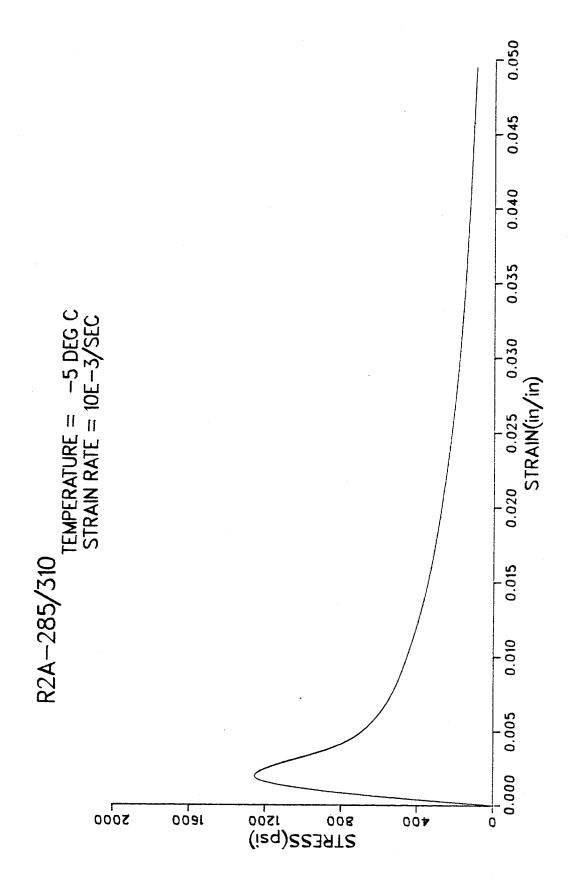


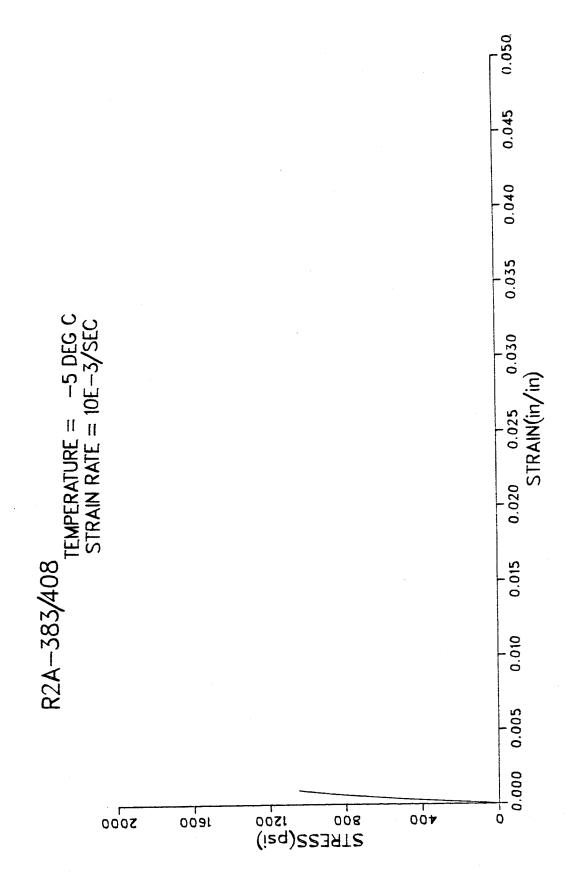



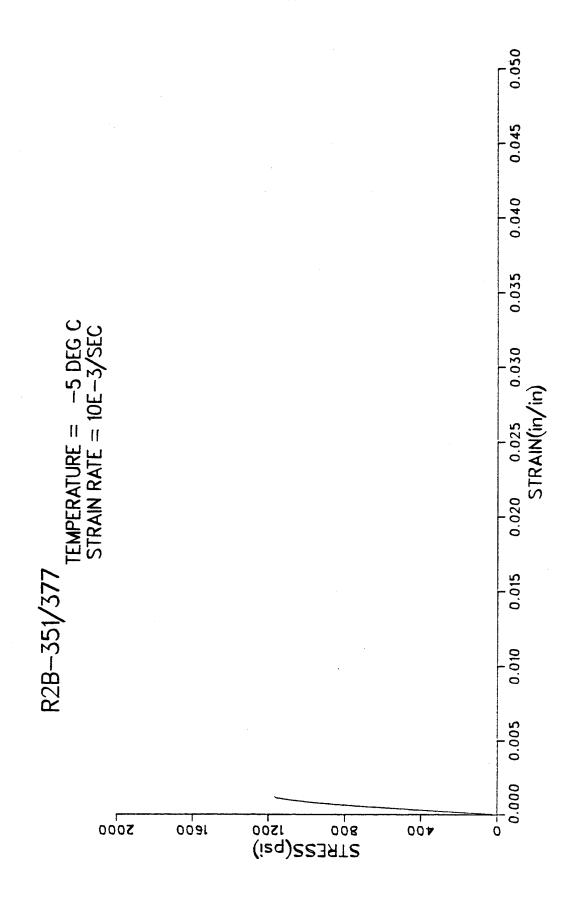



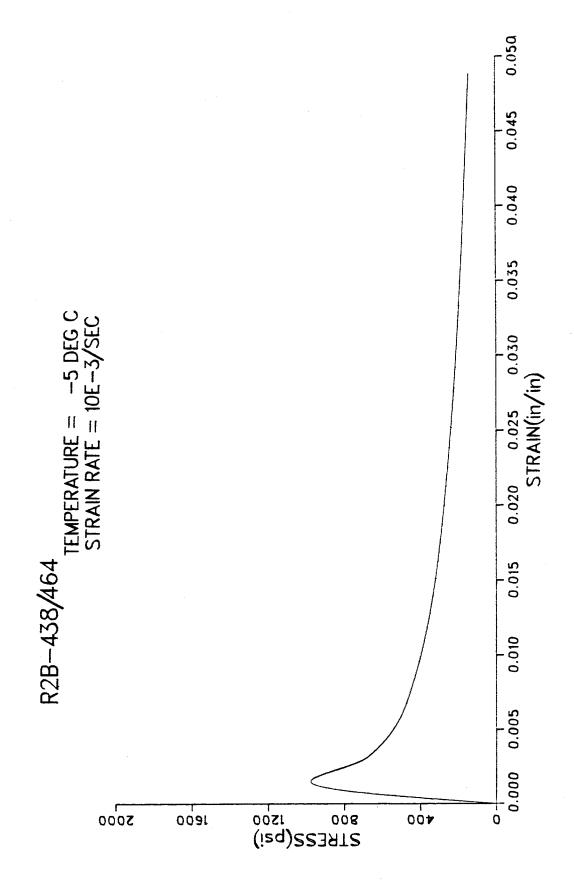



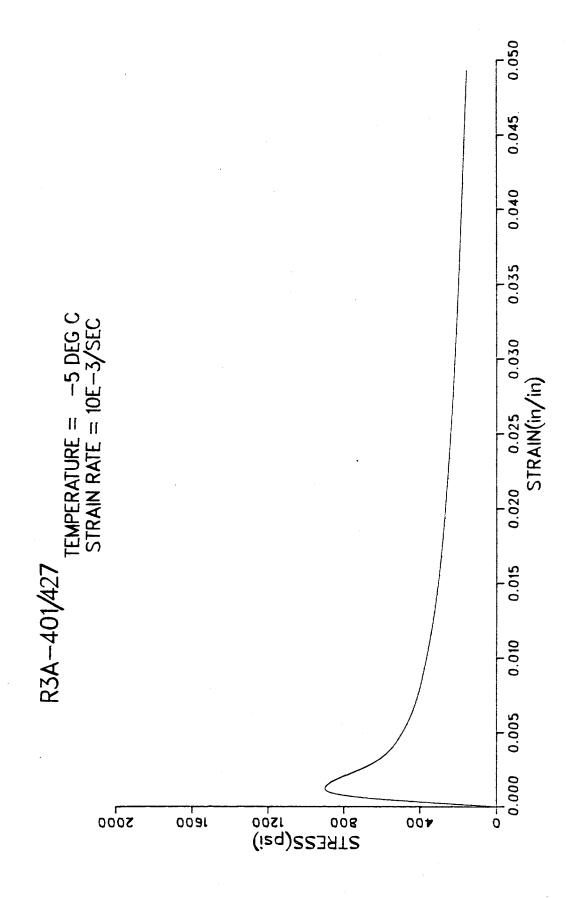



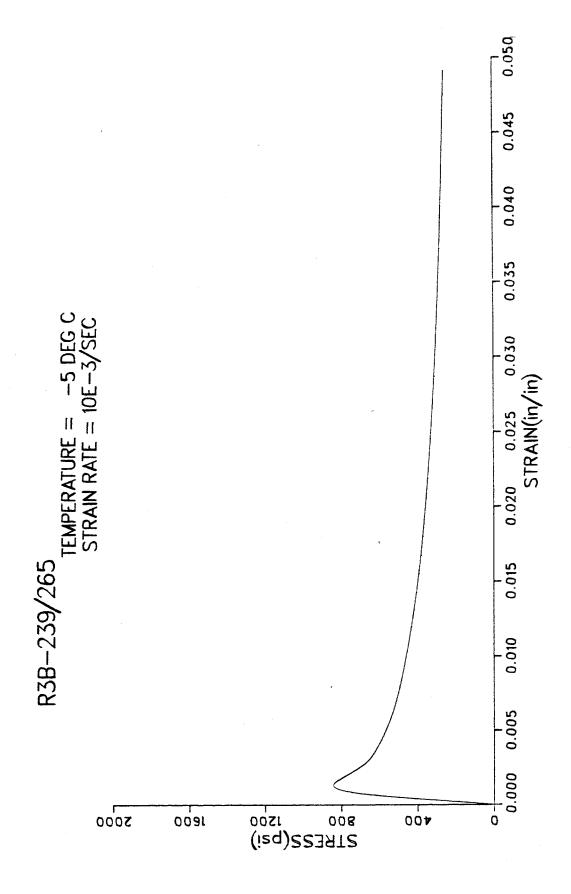


1 4 5

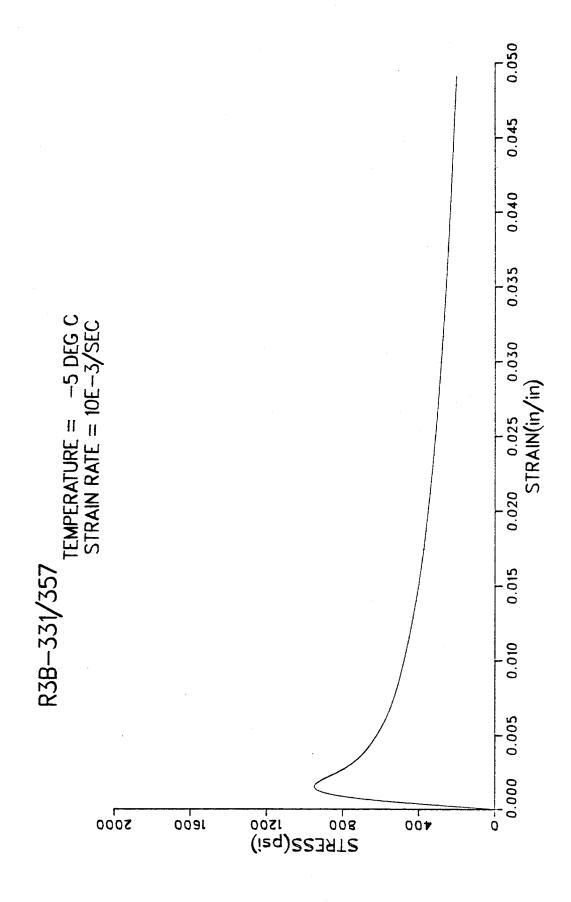


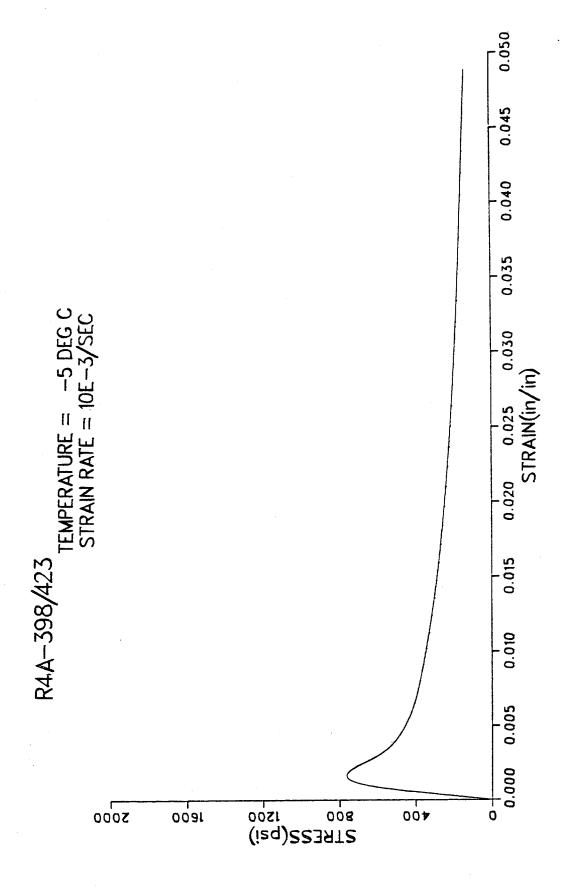



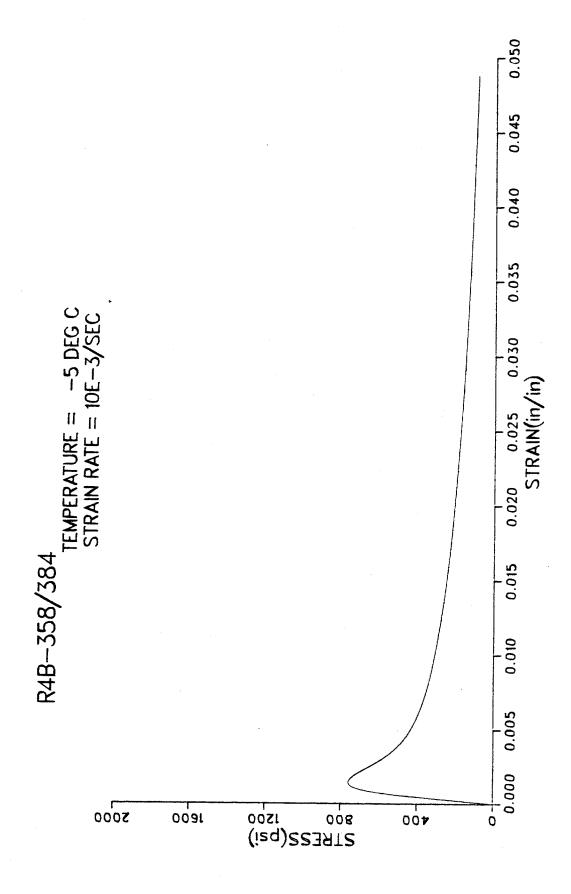



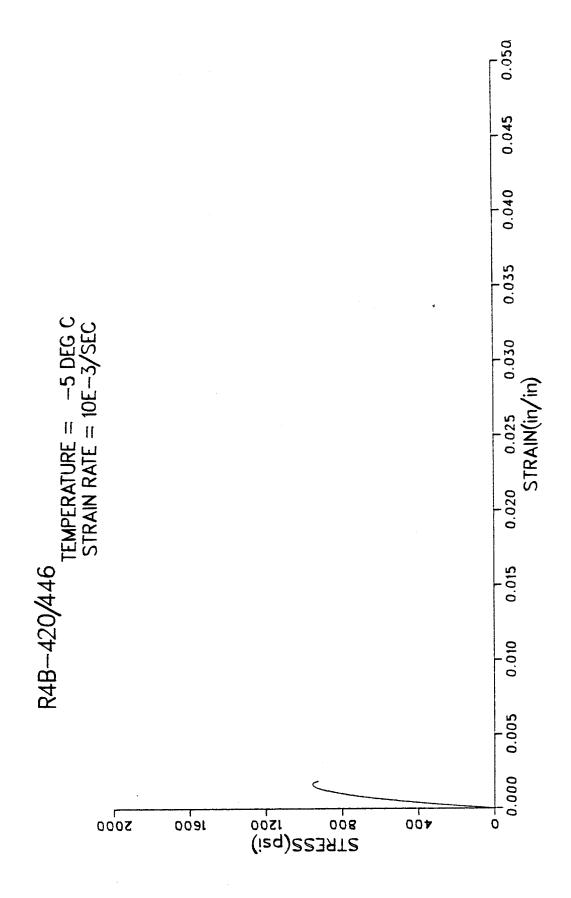



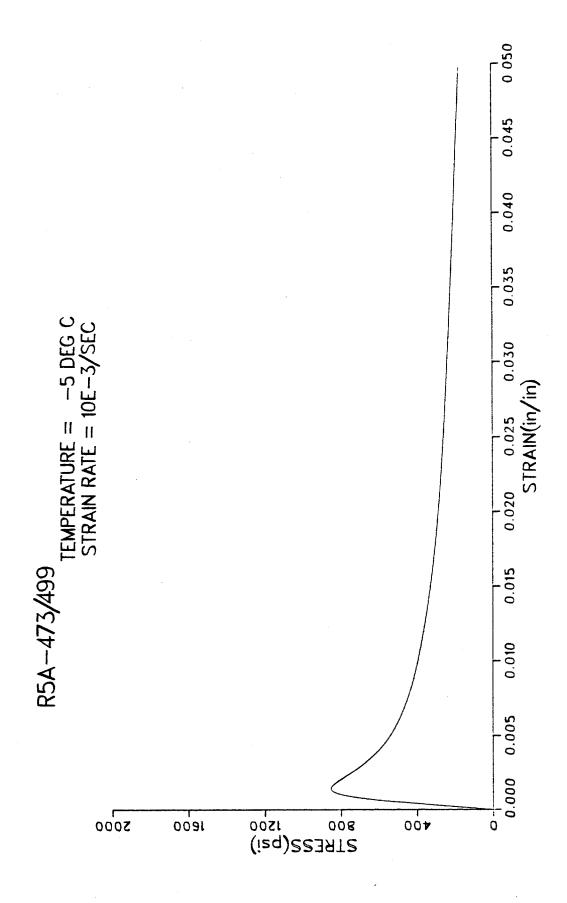



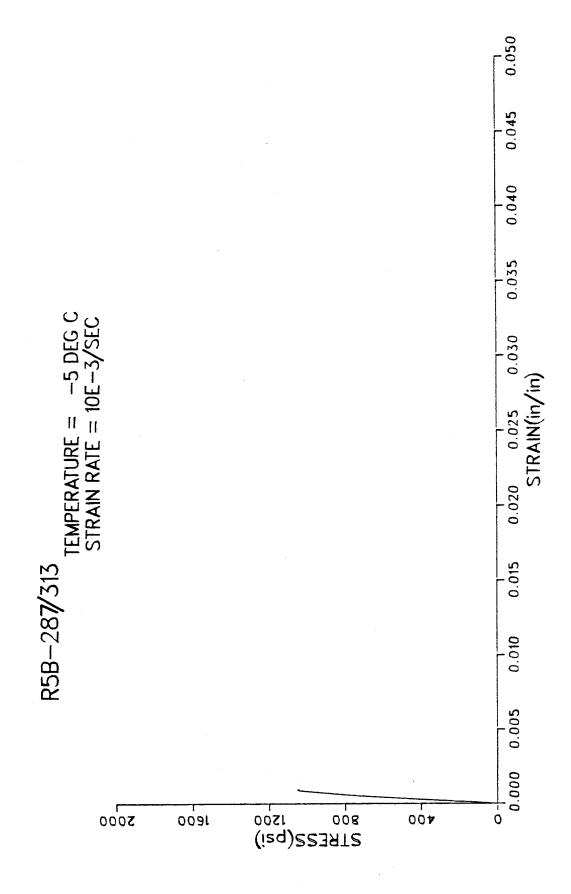



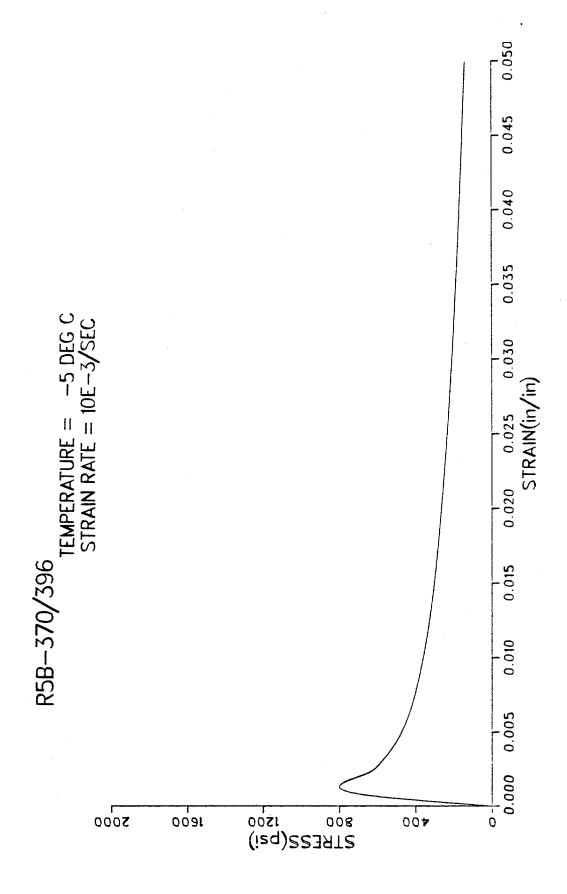



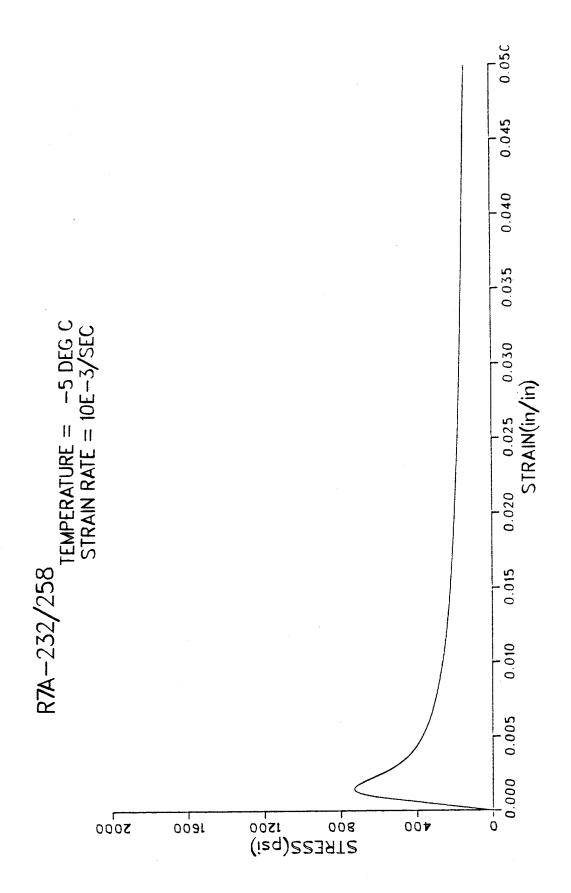



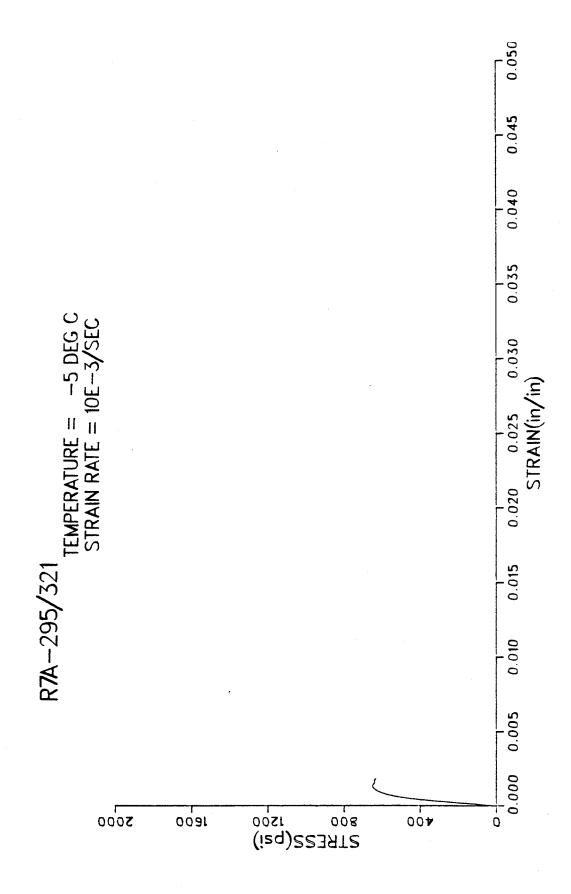



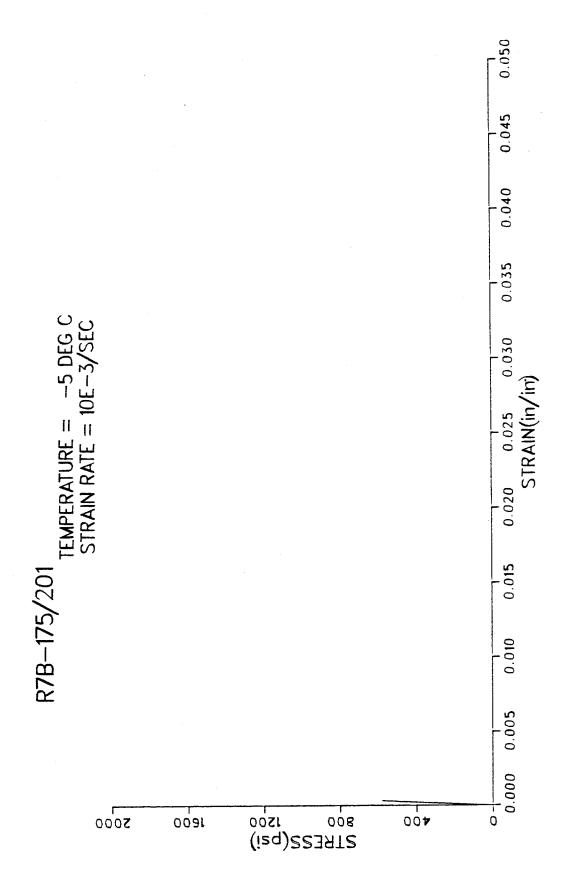



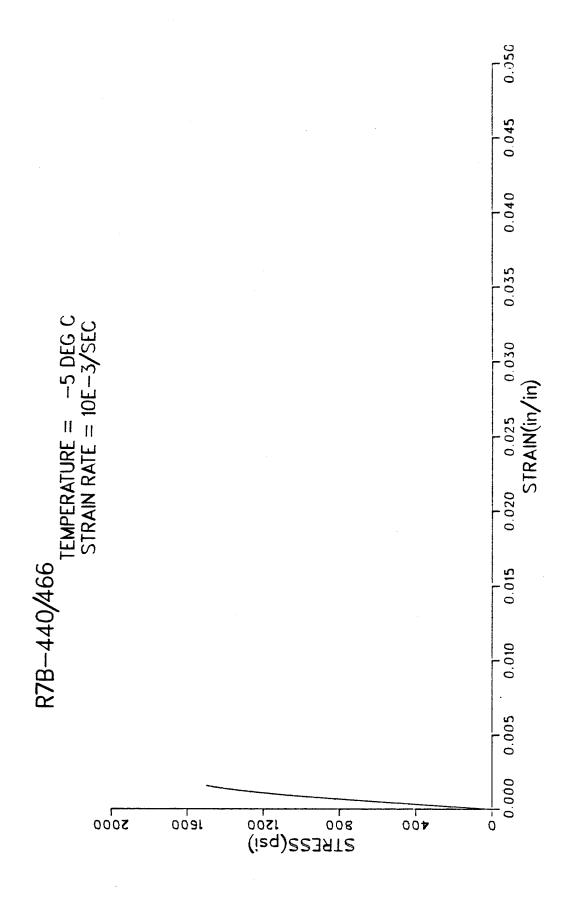



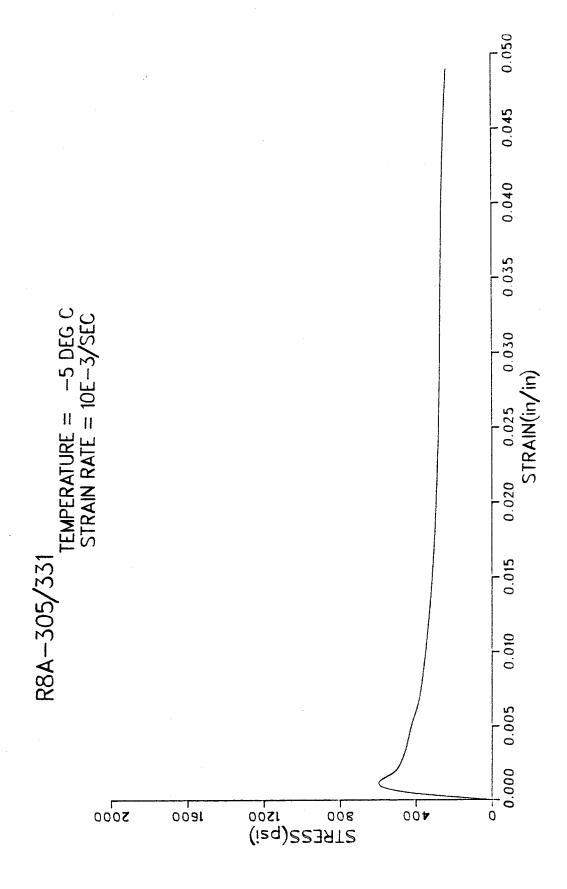



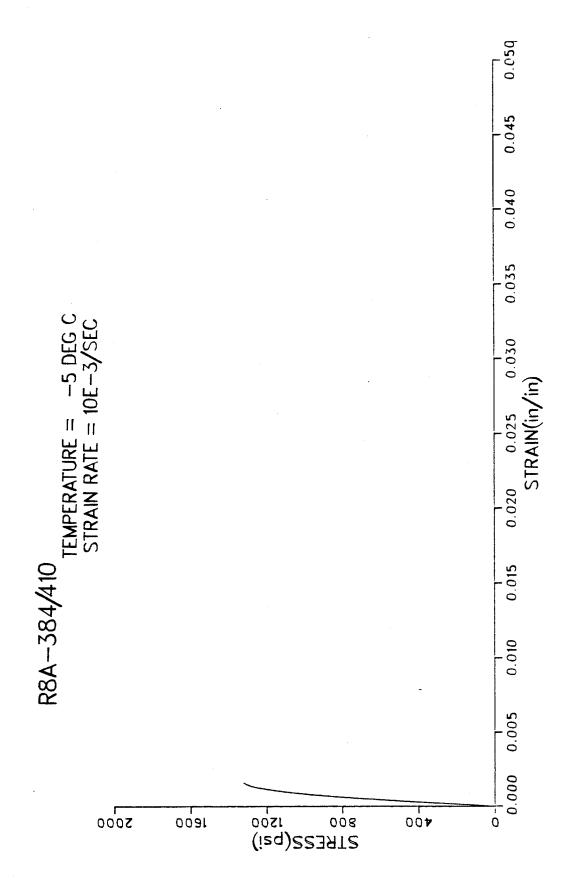



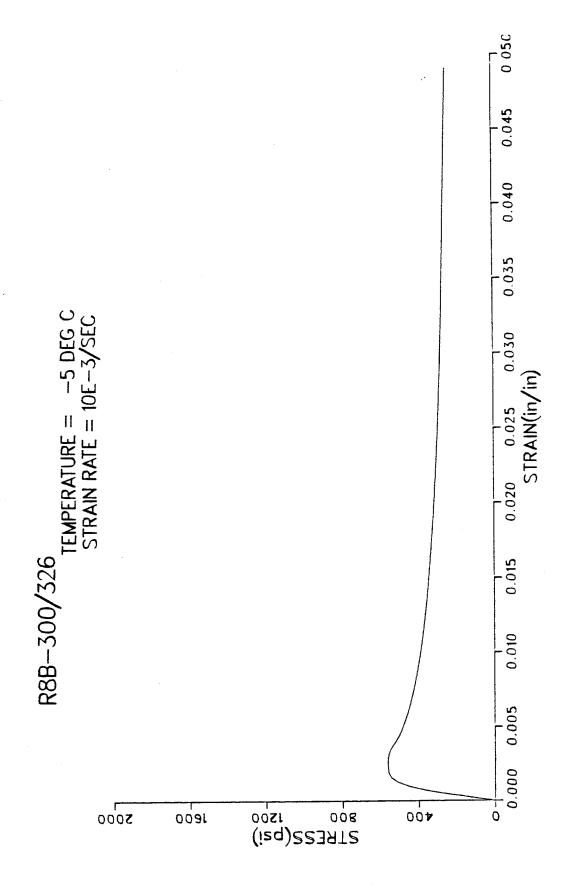



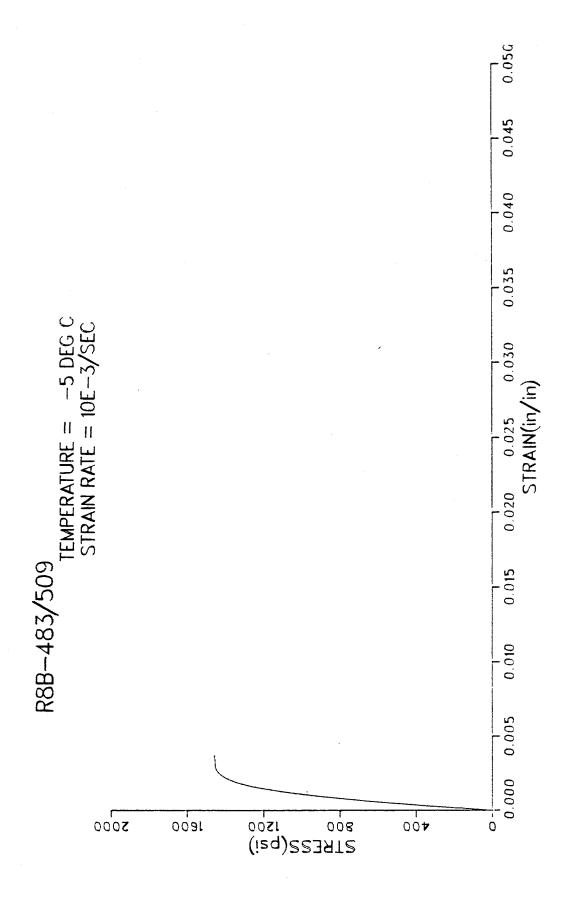



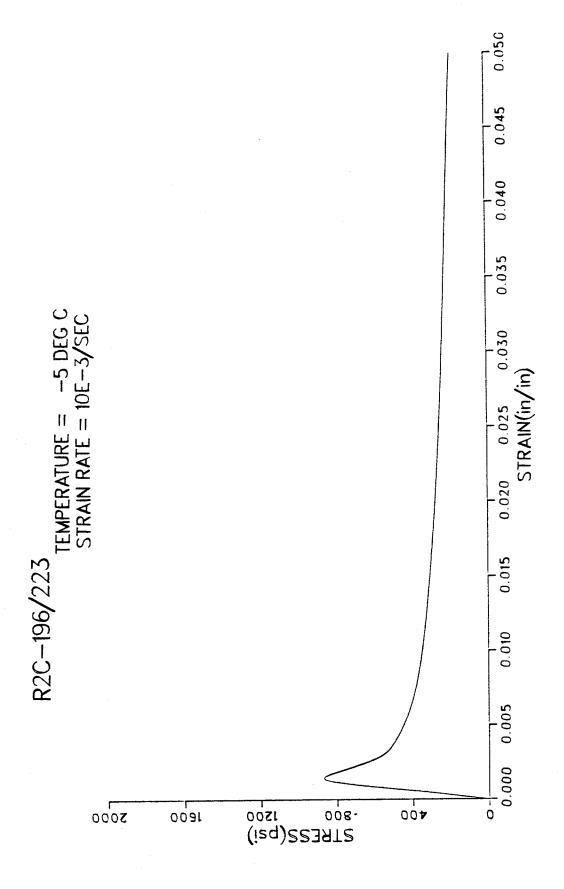



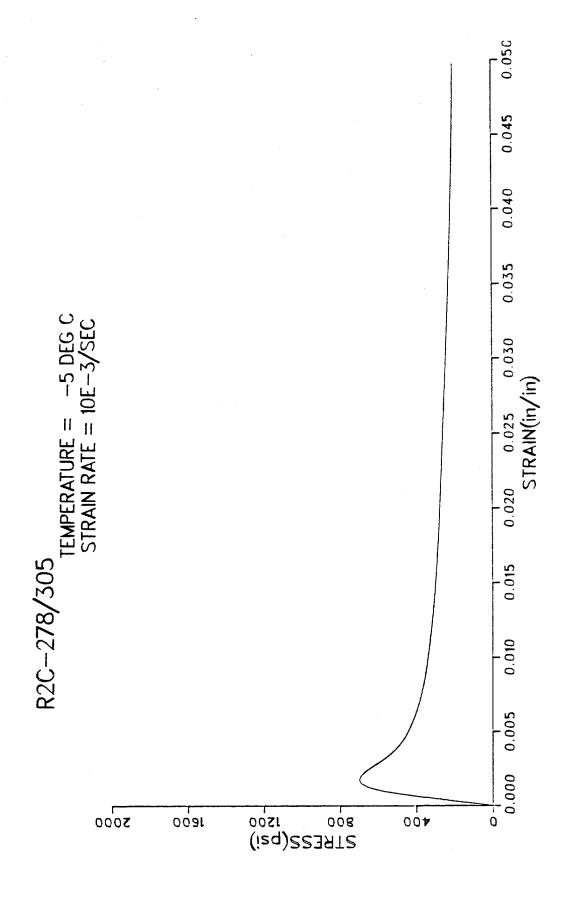



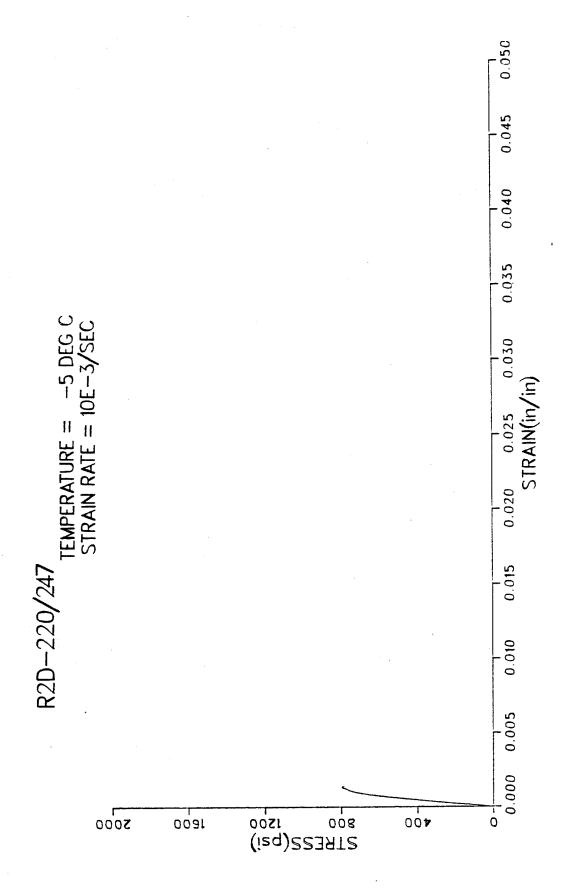



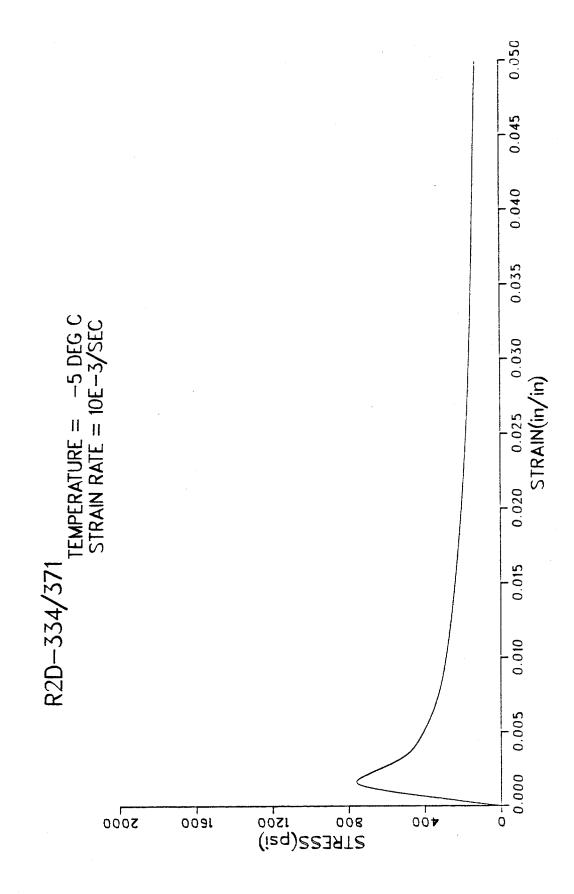



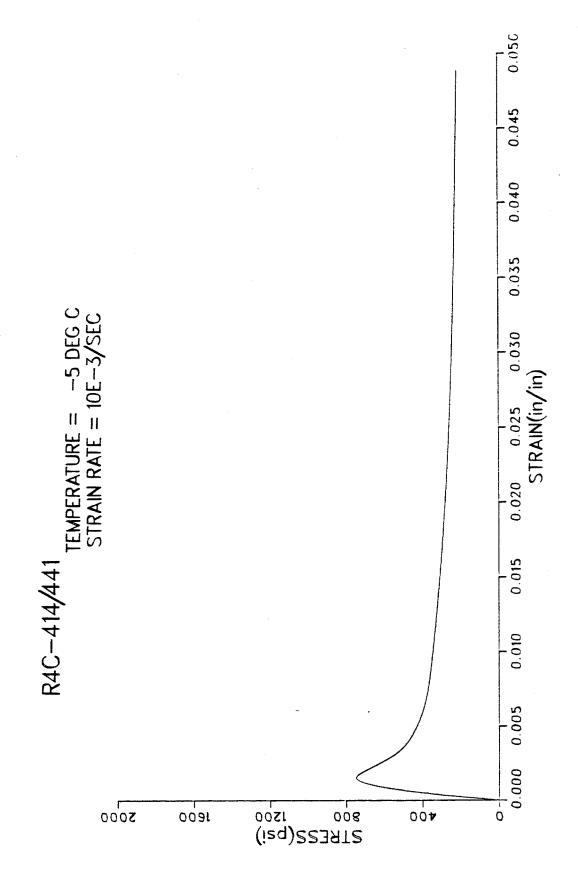



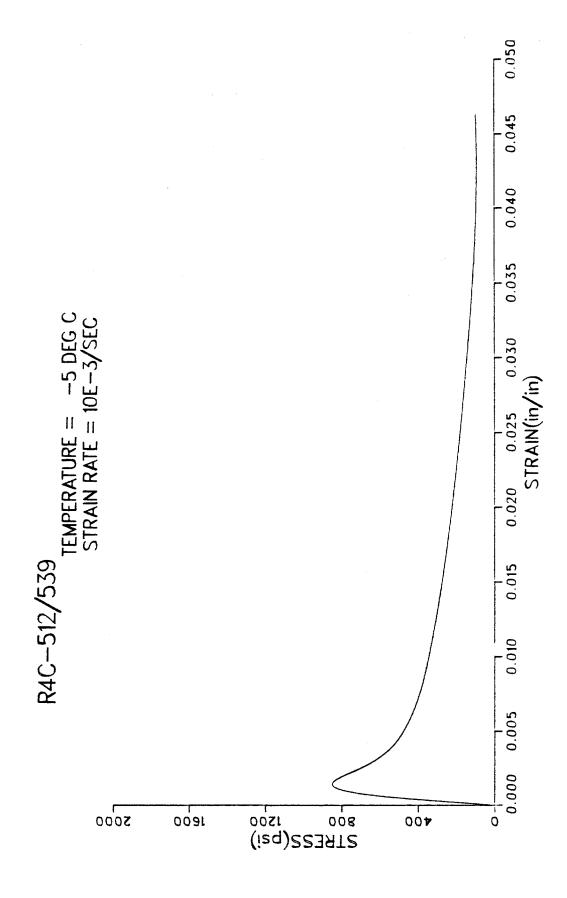


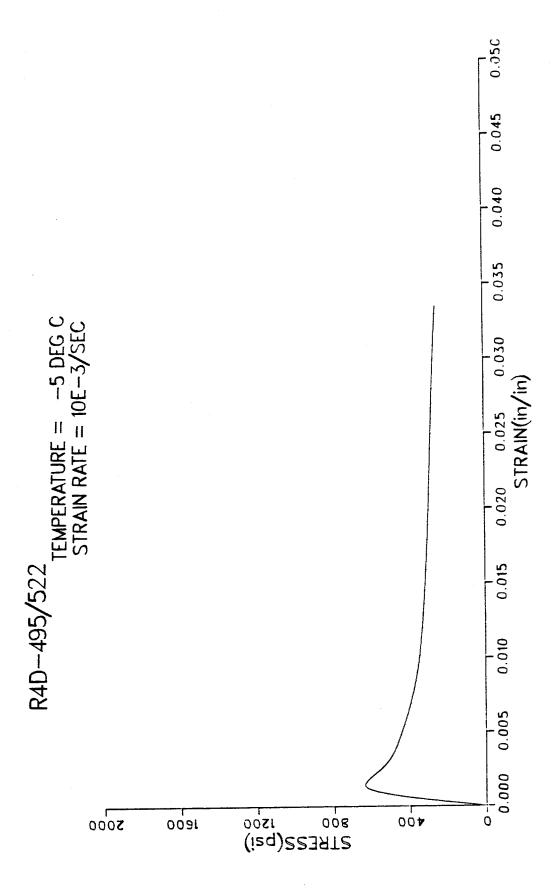



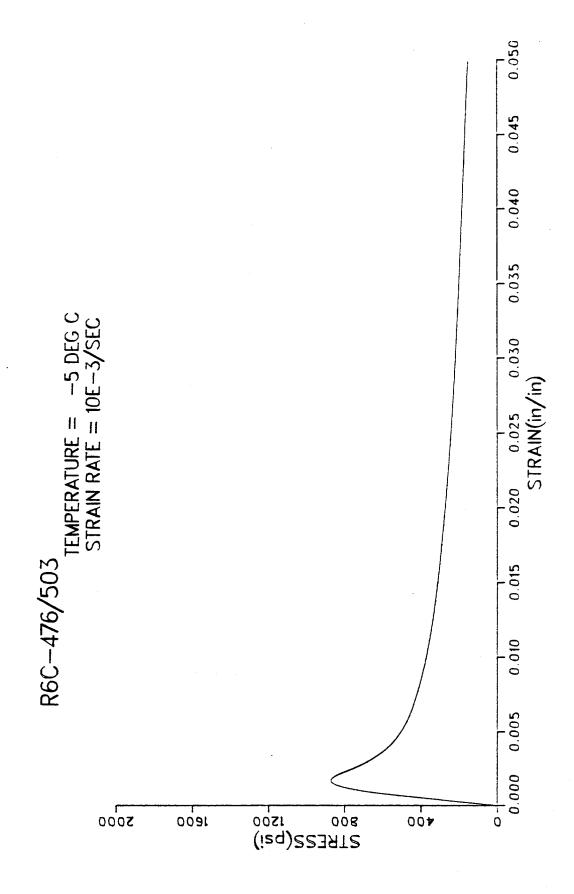



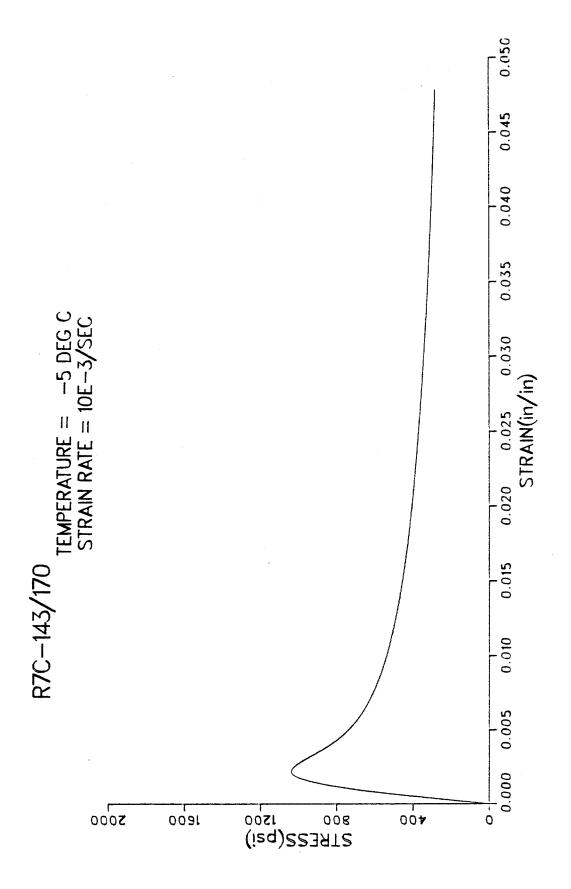



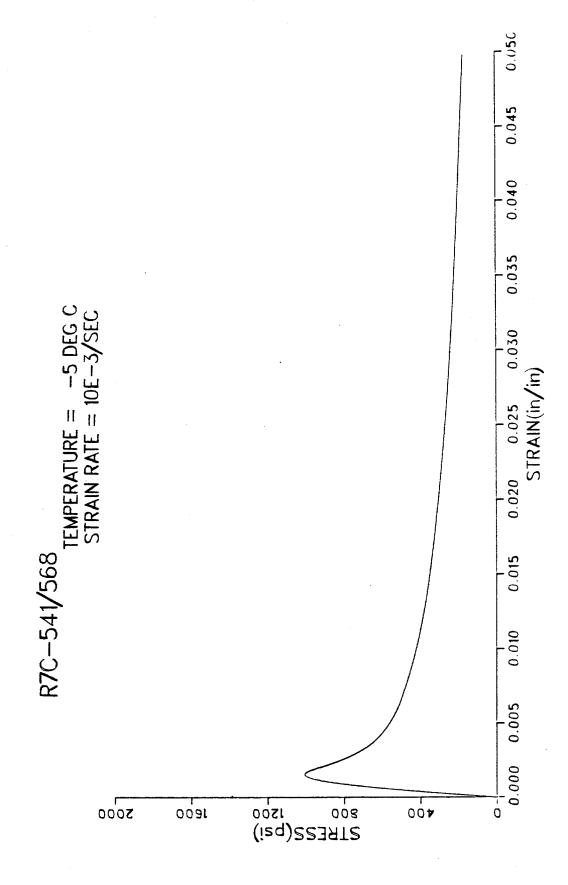


de di sail, iss

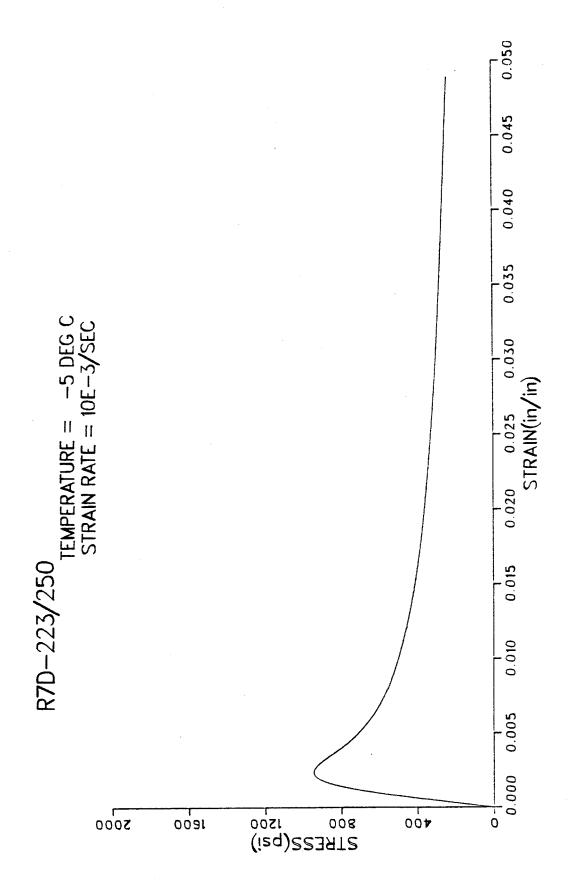


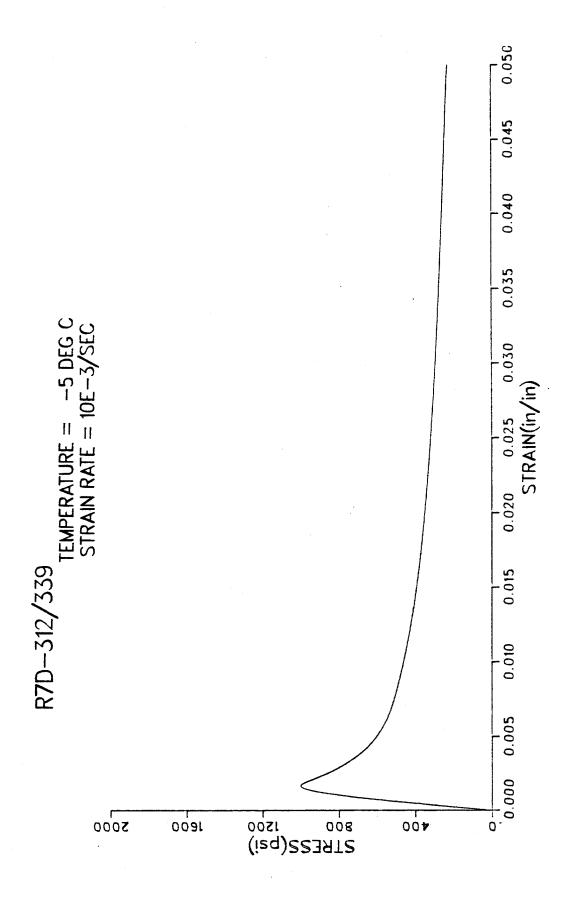



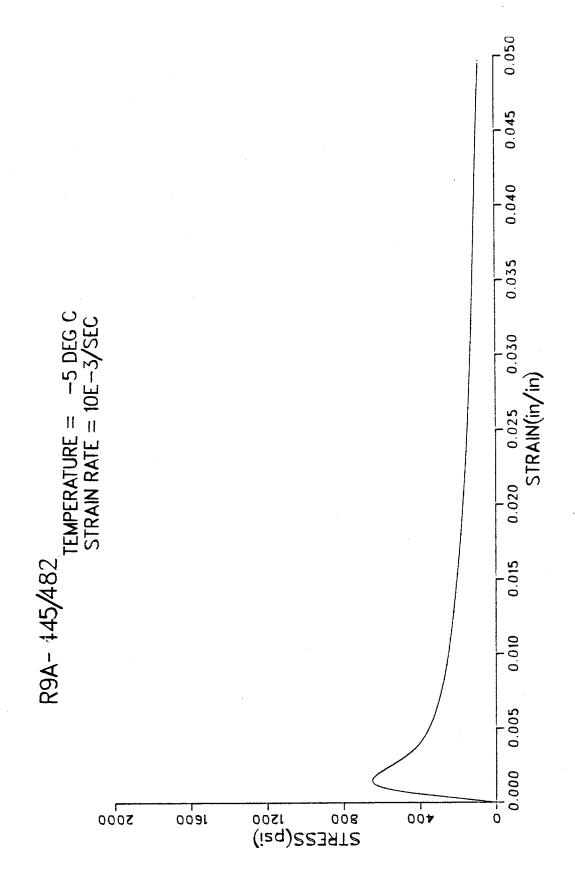



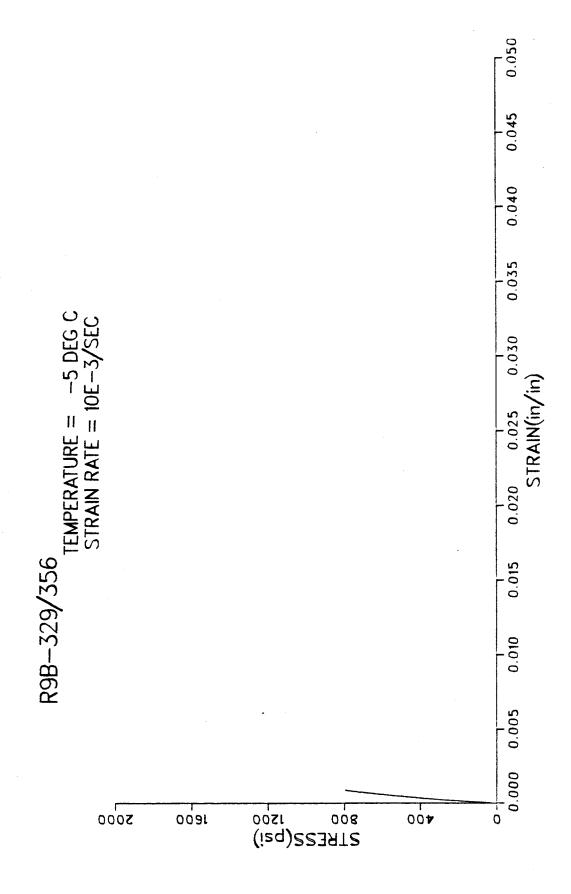


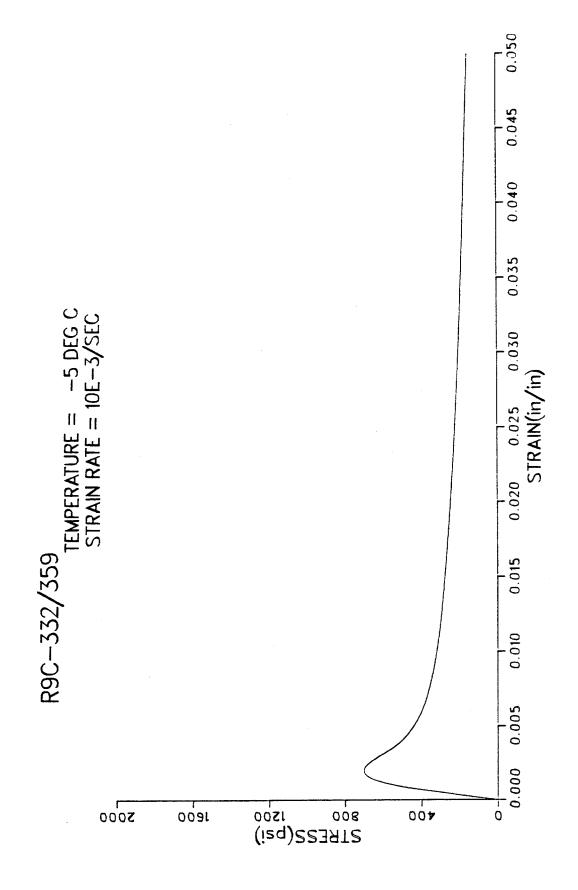



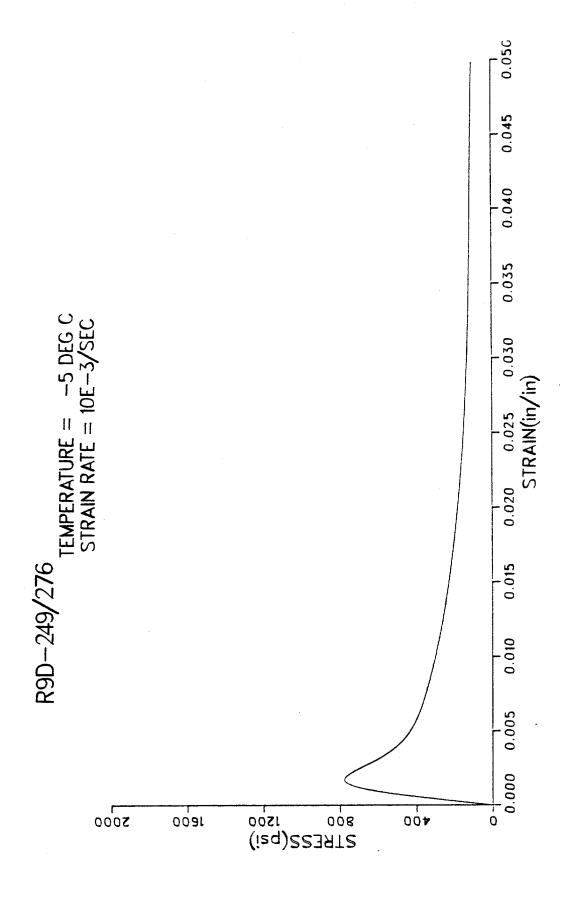



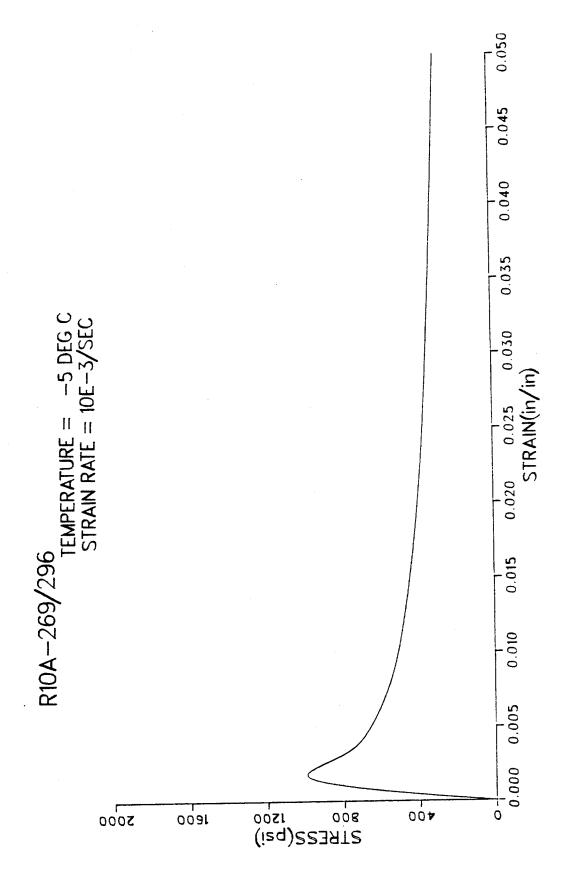



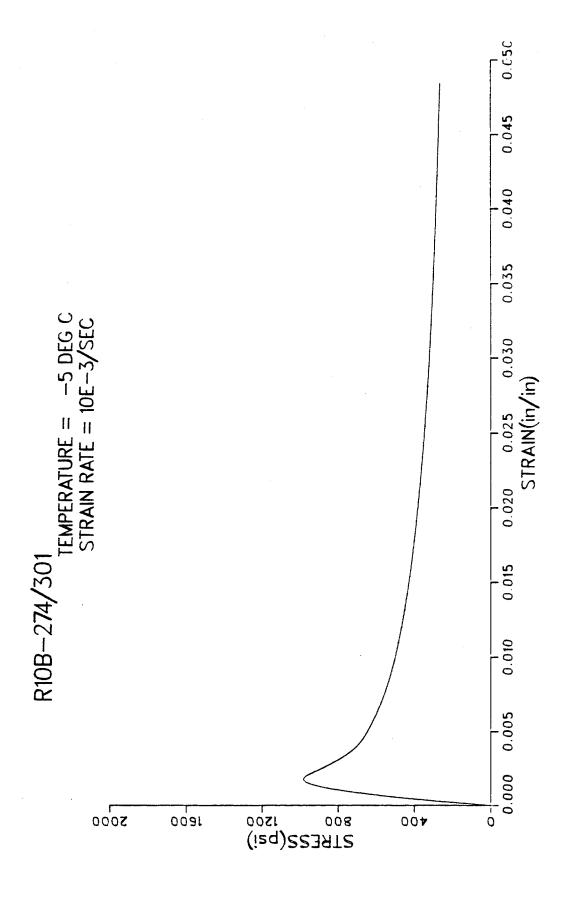



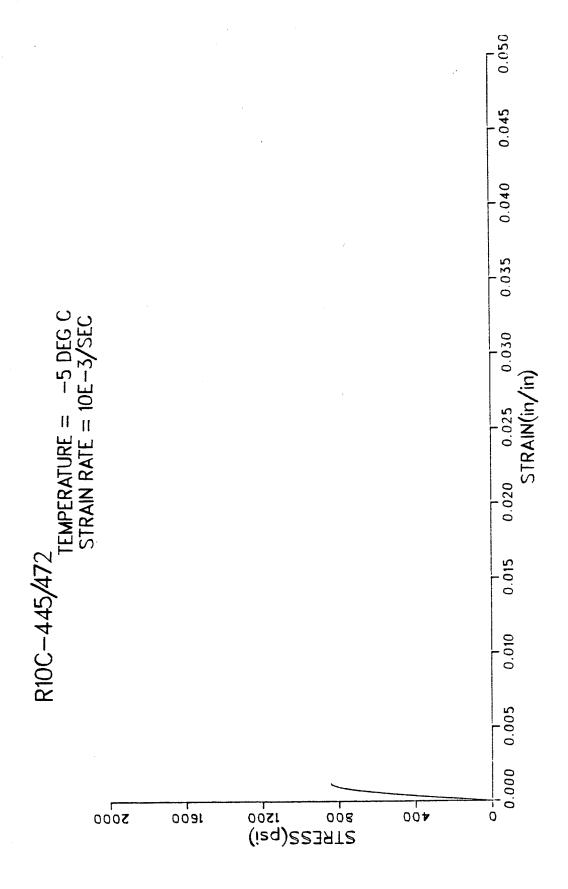


Same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same o

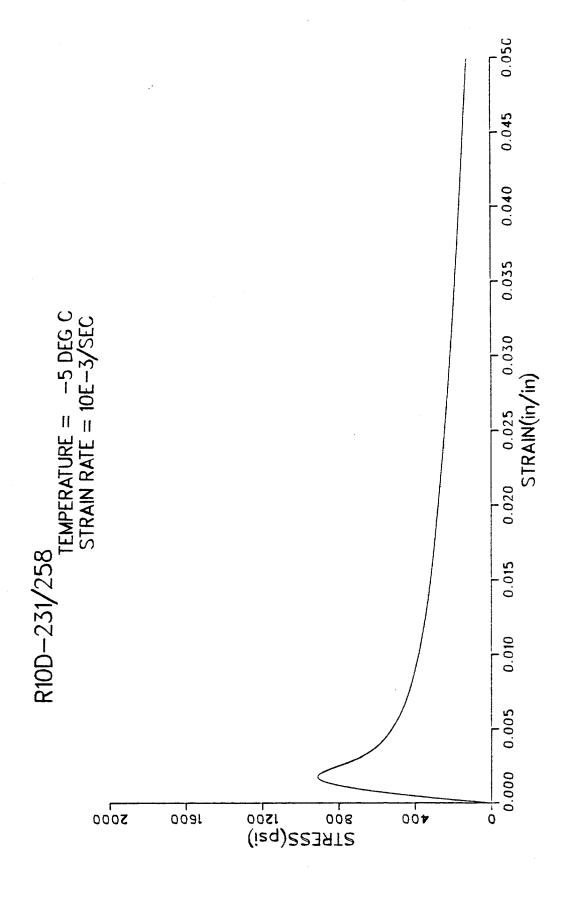


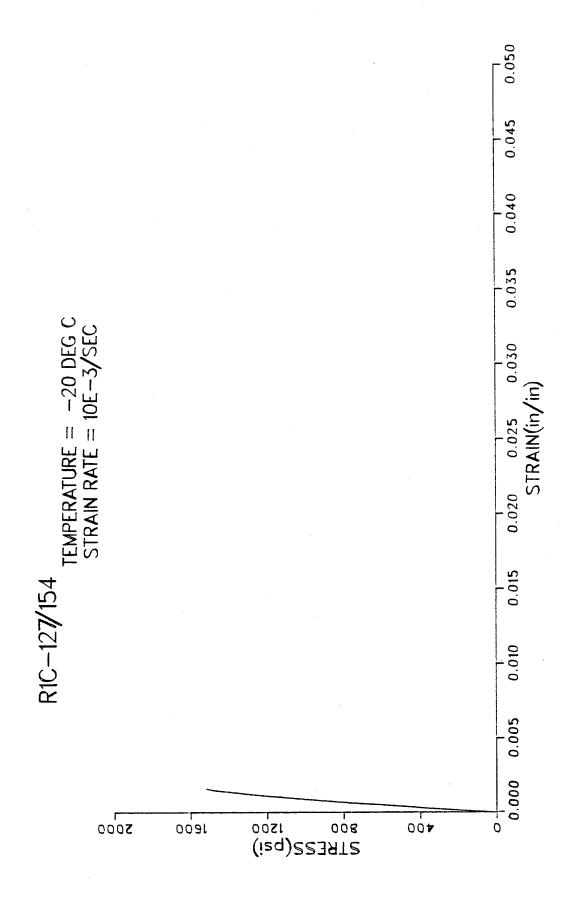



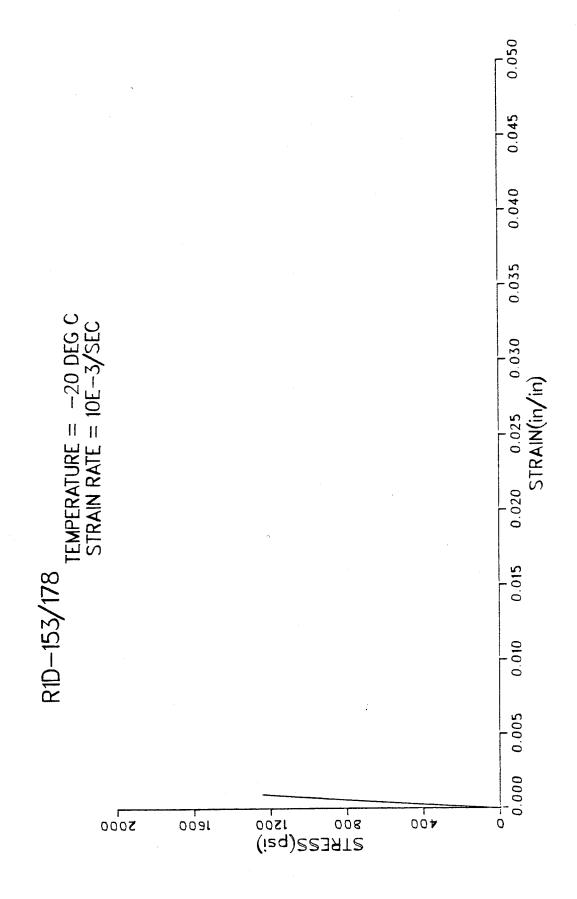



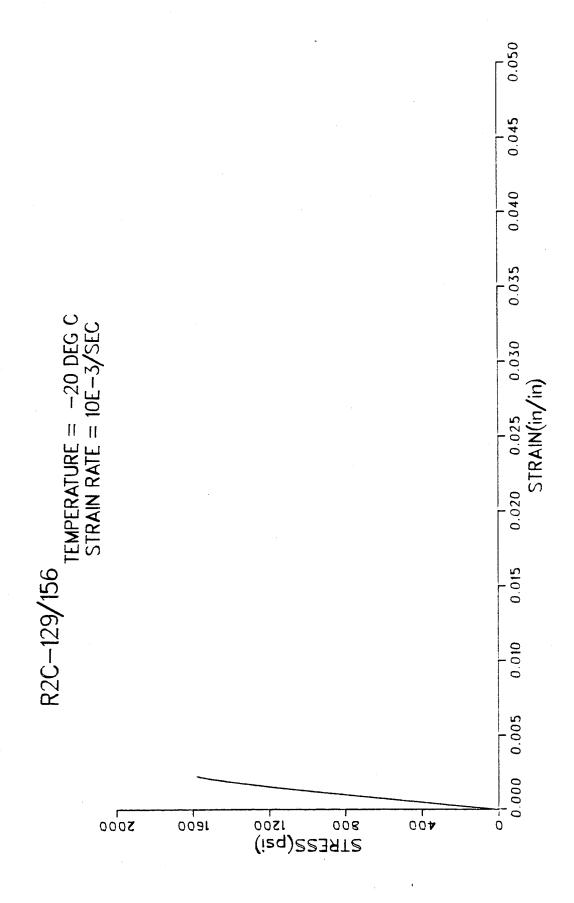



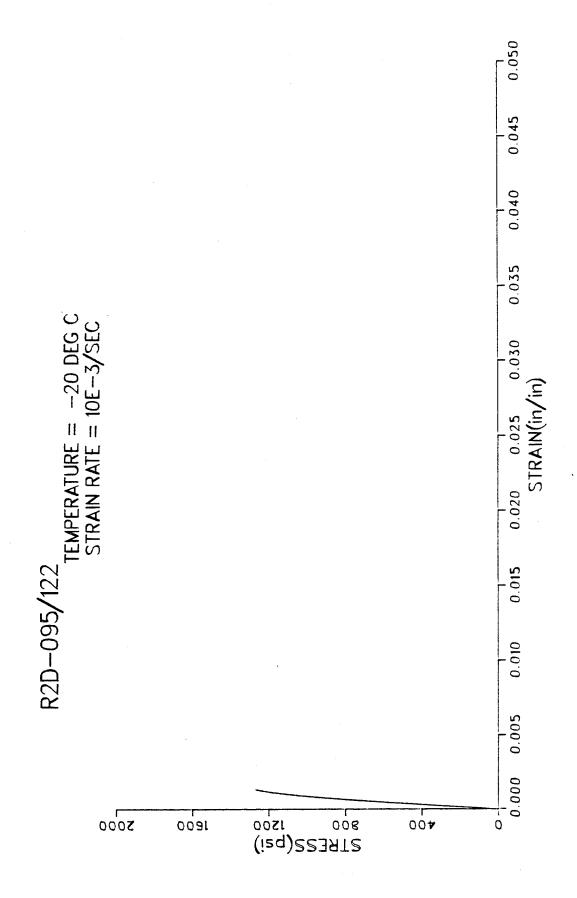


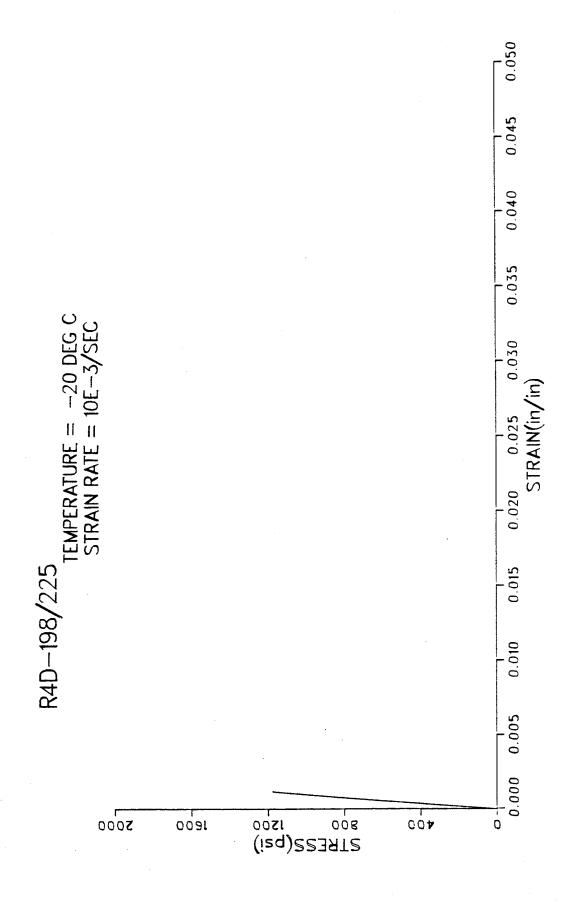


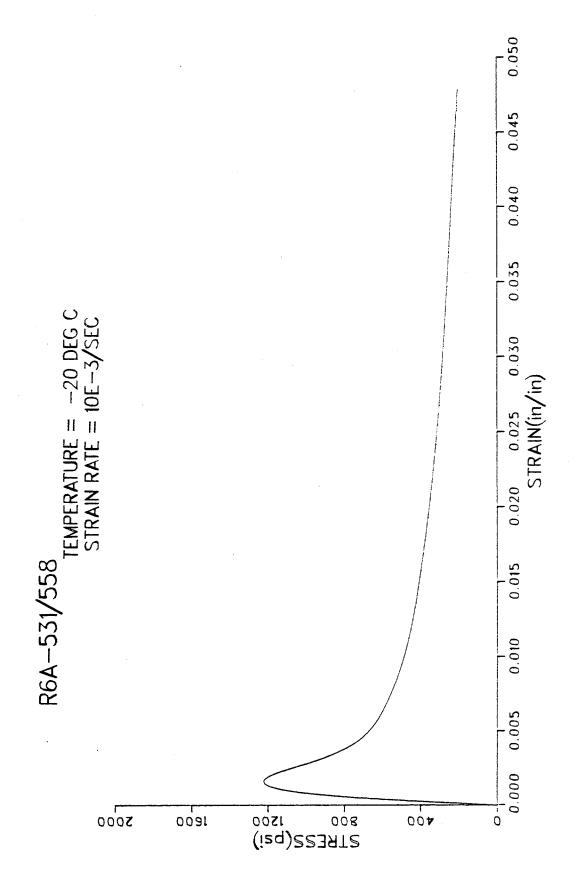



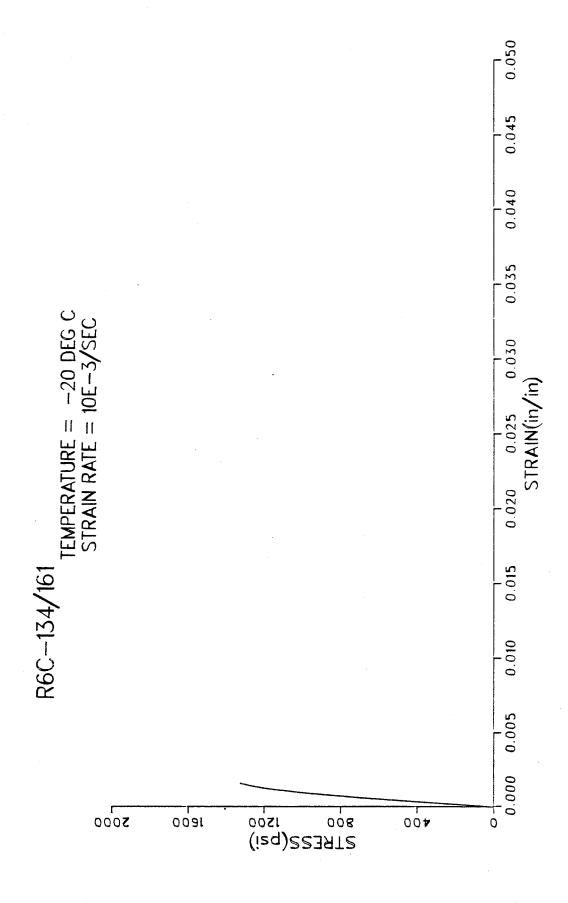



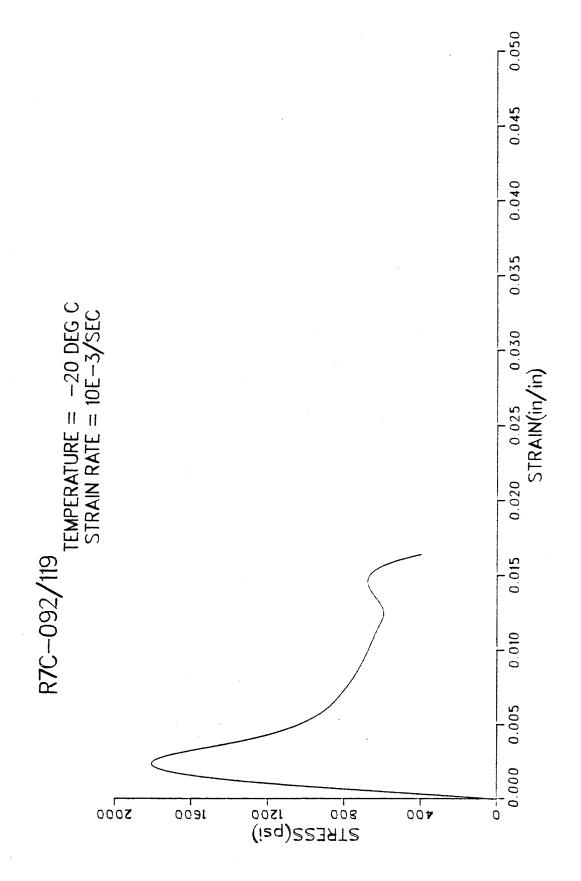





C-185 BRC 45-85

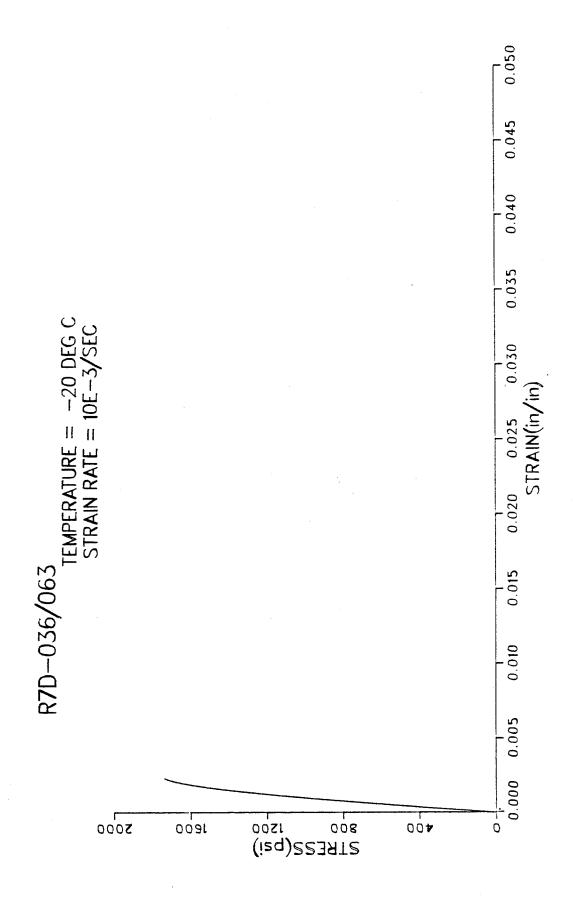

STRAIN RATE = (10E-3)/SEC TEMPERATURE = -20°C

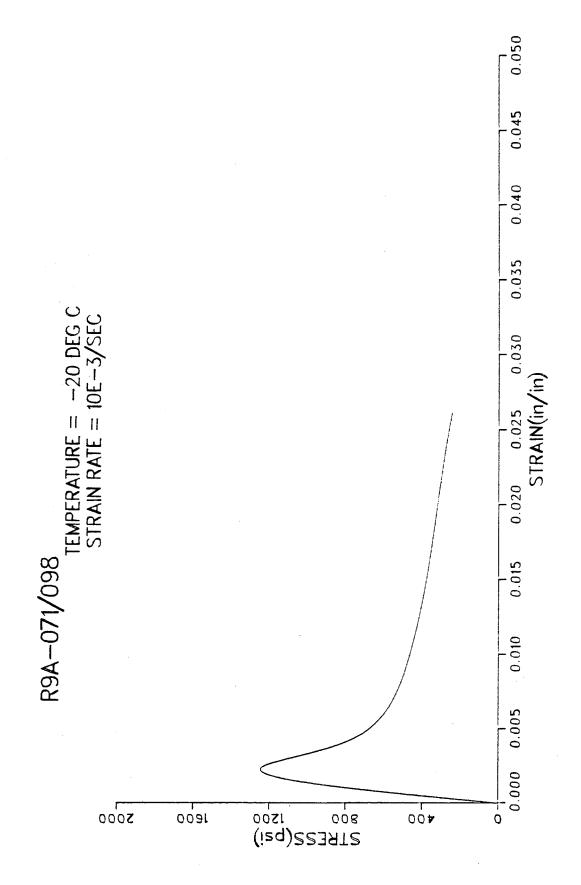


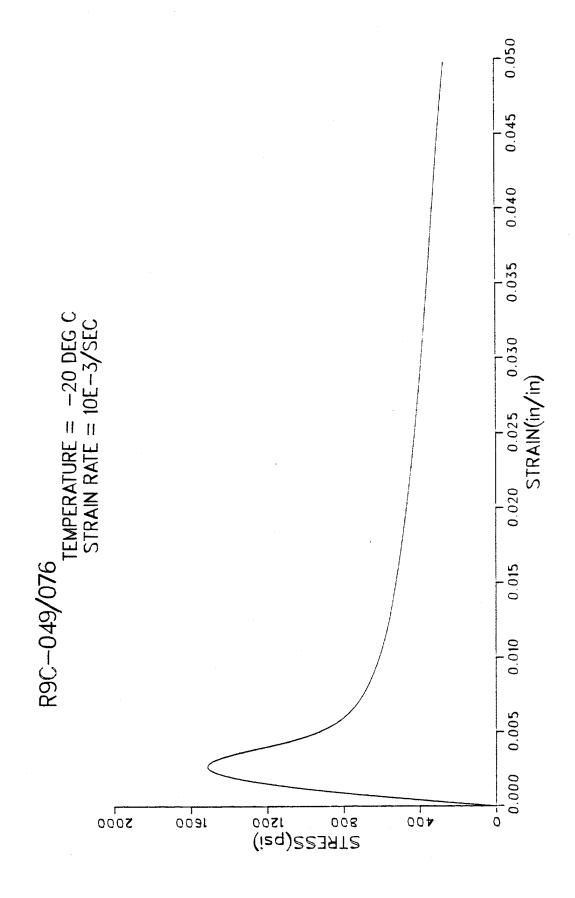


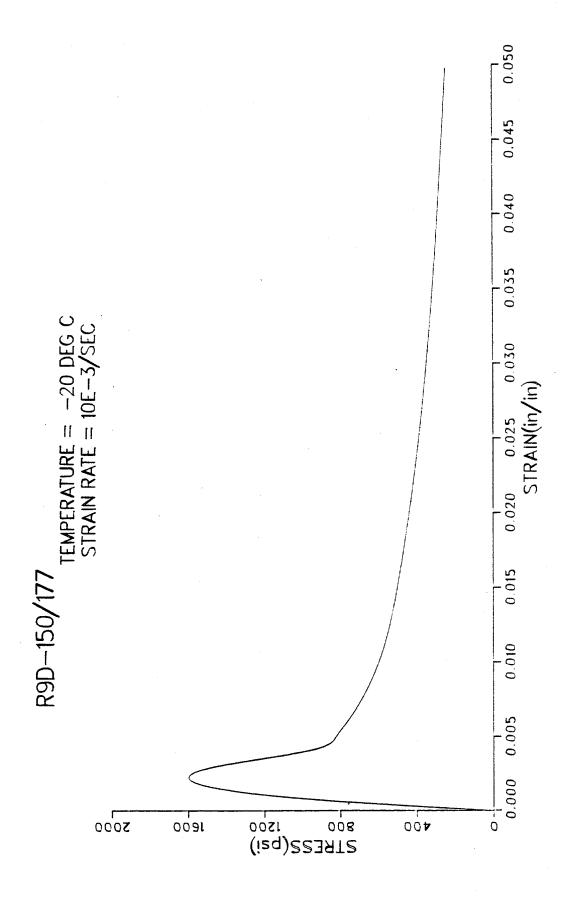



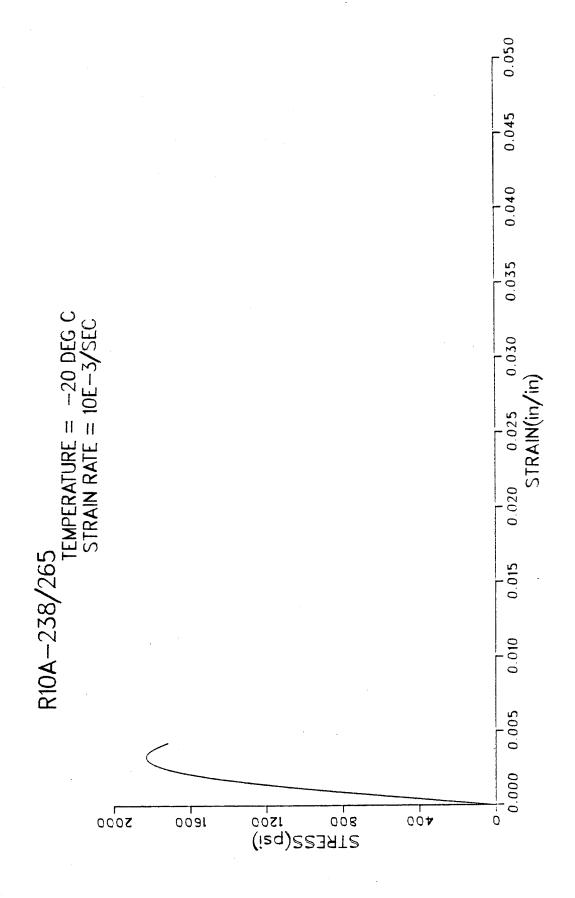



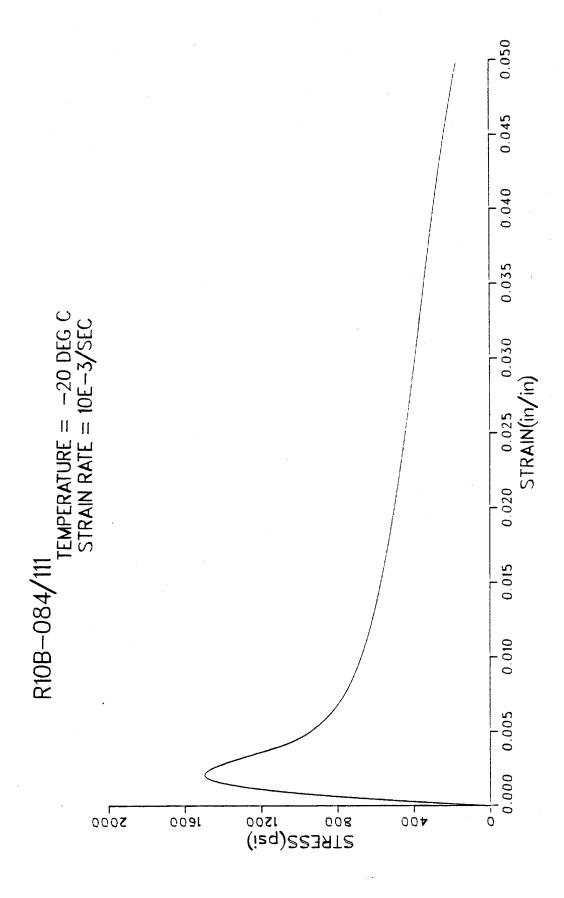






do a laberto





de di sil escri

